IPCS INCHEM Home


    INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY



    ENVIRONMENTAL HEALTH CRITERIA 125





    Platinum



    This report contains the collective views of an international group of
    experts and does not necessarily represent the decisions or the stated
    policy of the United Nations Environment Programme, the International
    Labour Organisation, or the World Health Organization.

    Published under the joint sponsorship of
    the United Nations Environment Programme,
    the International Labour Organisation,
    and the World Health Organization

    First draft prepared by Dr. G. Rosner, Dr. H.P. König,
    and Dr. D. Coenen-Stass, Fraunhofer Institute
    of Toxicology and Aerosol Research, Germany




    World Health Orgnization
    Geneva, 1991

          The International Programme on Chemical Safety (IPCS) is a joint
    venture of the United Nations Environment Programme, the International
    Labour Organisation, and the World Health Organization.  The main
    objective of the IPCS is to carry out and disseminate evaluations of
    the effects of chemicals on human health and the quality of the
    environment.  Supporting activities include the development of
    epidemiological, experimental laboratory, and risk-assessment methods
    that could produce internationally comparable results, and the
    development of manpower in the field of toxicology.  Other activities
    carried out by the IPCS include the development of know-how for coping
    with chemical accidents, coordination of laboratory testing and
    epidemiological studies, and promotion of research on the mechanisms
    of the biological action of chemicals.

    WHO Library Cataloguing in Publication Data

    Platinum.

          (Environmental health criteria: 125)

          1. Platinum - adverse effects    2. Platinum - toxicity
          3. Environmental exposure        I.Series

          ISBN 92 4 157125 X         (LC Classification QD 181.P8)
          ISSN 0250-863X

          (c) World Health Organization 1991


          Publications of the World Health Organization enjoy copyright
    protection in accordance with the provisions of Protocol 2 of the
    Universal Copyright Convention.  For rights of reproduction or
    translation of WHO publications, in part or  in toto,  application
    should be made to the Office of Publications, World Health
    Organization, Geneva, Switzerland.  The World Health Organization
    welcomes such applications.

          The designations employed and the presentation of the material in
    this publication do not imply the impression of any opinion whatsoever
    on the part of the Secretariat of the World Health Organization
    concerning the legal status of every country, territory, city, or area
    or of its authorities, or concerning the delimitation of its frontiers
    or boundaries.

          The mention of specific companies or of certain manufacturers'
    products does not imply that they are endorsed or recommended by the
    World Health Organization in preference to others of a similar nature
    that are not mentioned.  Errors and omissions excepted, the names of
    proprietary products are distinguished by initial capital letters.

    CONTENTS

    ENVIRONMENTAL HEALTH CRITERIA FOR PLATINUM

    1. SUMMARY AND CONCLUSIONS
         1.1. Identity, physical and chemical properties,
                analytical methods
         1.2. Sources of human and environmental exposure
         1.3. Environmental transport, distribution, and
                transformation
         1.4. Environmental levels and human exposure
         1.5. Kinetics and metabolism
         1.6. Effects on laboratory mammals and  in vitro
                test systems
         1.7. Effects on humans
         1.8. Effects on other organisms in the laboratory and field

    2. IDENTITY, PHYSICAL AND CHEMICAL PROPERTIES, ANALYTICAL METHODS
         2.1. Identity
         2.2. Physical and chemical properties
                2.2.1. Platinum metal
                2.2.2. Platinum compounds
         2.3. Conversion factors
         2.4. Analytical methods
                2.4.1. Sampling
                2.4.2. Sample pretreatment
                2.4.3. Detection and measurement
                        2.4.3.1    Spectrophotometry
                        2.4.3.2    Radiochemical methods
                        2.4.3.3    X-ray fluorescence spectroscopy
                        2.4.3.4    Electron spectroscopy for 
                                   chemical analysis
                        2.4.3.5    Electrochemical analysis
                        2.4.3.6    Proton-induced X-ray emission
                        2.4.3.7    Liquid chromatography
                        2.4.3.8    Atomic absorption spectrometry
                        2.4.3.9    Inductively coupled plasma
                        2.4.3.10   Inductively coupled plasma -
                                   mass spectrometry

    3. SOURCES OF HUMAN AND ENVIRONMENTAL EXPOSURE
         3.1. Natural occurrence
         3.2. Anthropogenic sources
                3.2.1. Production levels and processes
                        3.2.1.1    World production figures
                        3.2.1.2    Manufacturing processes
                        3.2.1.3    Emissions from stationary sources
                        3.2.1.4    Emissions from automobile catalysts
                3.2.2. Uses

    4. ENVIRONMENTAL TRANSPORT, DISTRIBUTION, AND TRANSFORMATION
         4.1. Transport and distribution between media
         4.2. Biotransformation
         4.3. Ultimate fate following use

    5. ENVIRONMENTAL LEVELS AND HUMAN EXPOSURE
         5.1. Environmental levels
                5.1.1. Ambient air
                5.1.2. Water and sediments
                5.1.3. Soil
                5.1.4. Food
                5.1.5. Terrestrial and aquatic organisms
         5.2. General population exposure
         5.3. Occupational exposure during manufacture,
                formulation or use

    6. KINETICS AND METABOLISM

    7. EFFECTS ON LABORATORY MAMMALS AND  IN VITRO TEST SYSTEMS
         7.1. Single exposure
         7.2. Short-term exposure
         7.3. Skin and eye irritation;  skin and respiratory 
                sensitization
                7.3.1. Skin irritation
                7.3.2. Eye irritation
                7.3.3. Skin sensitization
                7.3.4. Skin and respiratory sensitization
                7.3.5. Respiratory sensitization
                7.3.6. Sensitization by other routes
         7.4. Reproductive toxicity, embryotoxicity, and 
                teratogenicity
         7.5. Mutagenicity and related end-points
         7.6. Carcinogenicity and anticarcinogenicity
         7.7. Other special studies
                7.7.1. Effects on alveolar macrophages
                7.7.2. Non-allergic mediator release
                7.7.3. Effects on mitochondrial function
                7.7.4. Effects on the nervous system
                7.7.5. Side effects on cisplatin and its analogues
         7.8. Factors modifying toxicity

    8. EFFECTS ON HUMANS
         8.1. General population exposure
                8.1.1. Acute toxicity - poisoning
                8.1.2. Effects of exposure to platinum
                        emitted from automobile catalysts
         8.2. Occupational exposure
                8.2.1. Case reports and cross-sectional studies
                8.2.2. Allergenicity of platinum and
                        platinum compounds

                8.2.3. Clinical manifestations
                8.2.4. Immunological mechanism and diagnosis
                8.2.5. Predisposing factors
         8.3. Side effects of cisplatin
         8.4. Carcinogenicity

    9. EFFECTS ON OTHER ORGANISMS IN THE LABORATORY AND FIELD
         9.1. Microorganisms
         9.2. Aquatic organisms
                9.2.1. Plants
                9.2.2. Animals
         9.3. Terrestrial organisms

    10. EVALUATION OF HUMAN HEALTH RISKS AND EFFECTS ON THE ENVIRONMENT
         10.1. Evaluation of human health risks
                10.1.1. General population exposure
                        10.1.1.1   Exposure
                        10.1.1.2   Health effects
                10.1.2. Occupational groups
                        10.1.2.1   Exposure
                        10.1.2.2   Health effects
         10.2. Evaluation of effects on the environment

    11. RECOMMENDATIONS FOR PROTECTION OF HUMAN HEALTH AND
         THE ENVIRONMENT
         11.1. Pre-employment screening and medical evaluations
         11.2. Substitution with non-allergenic substances
         11.3. Employment screening and medical evaluations
         11.4. Workplace hygiene

    12. FURTHER RESEARCH

    13. PREVIOUS EVALUATIONS BY INTERNATIONAL BODIES

    REFERENCES

    RESUME

    RESUMEN
    

    WHO TASK GROUP ON ENVIRONMENTAL HEALTH CRITERIA FOR PLATINUM

     Members

    Dr V. Bencko, Institute of Hygiene, Charles University, Prague,
         Czechoslovakia

    Dr R.E. Biagini, Division of Biomedical and Behavioral Sciences,
         National Institute for Occupational Safety & Health,
         Cincinnati, Ohio, USA  (Joint Rapporteur)

    Dr I. Farkas, National Institute of Hygiene, Budapest, Hungary

    Dr U. Heinrich, Department of Environmental Hygiene, Fraunhofer
         Institute of Toxicology and Aerosol Research, Hanover, Germany

    Dr R. Hertel, Fraunhofer Institute of Toxicology and Aerosol
         Research, Hanover, Germany

    Professor G. Kazantzis, Centre for Environmental Technology, Royal
         School of Mines, London, United Kingdom 

    Professor A. Massoud, Department of Community, Environmental and
         Occupational Medicine, Faculty of Medicine, Ain Shams
         University, Cairo, Egypt  (Chairman)

    Dr R. Merget, Department of Internal Medicine, Hospital of the
         Johann Wolfgang Goethe University, Frankfurt am Main, Germany

    Dr G. Rosner, Fraunhofer Institute of Toxicology and Aerosol
         Research, Hanover, Germany  (Joint Rapporteur)

    Dr A.E. Soyombo, Environmental & Occupational Health Division,
         Federal Ministry of Health, Lagos, Nigeria  (Vice-Chairman)

     Observers

    Dr C.W. Bradford, Environmental, Health and Safety   Services,
         Johnson Matthey Technology Centre, Reading, United Kingdom

    Dr W.E. Mayr, Industrial Toxicology Department, Degussa AG, Hanau-
         Wolfgang, Germany

     Secretariat

    Dr P.G. Jenkins, International Programme on Chemical Safety,
         Division of Environmental Health, World Health Organization,
         Geneva, Switzerland

    Dr E.M. Smith, International Programme on Chemical Safety, Division
         of Environmental Health, World Health Organization, Geneva,
         Switzerland

    NOTE TO READERS OF THE CRITERIA DOCUMENTS

         Every effort has been made to present information in the
    criteria documents as accurately as possible without unduly delaying
    their publication. In the interest of all users of the environmental
    health criteria documents, readers are kindly requested to
    communicate any errors that may have occurred to the Manager of the
    International Programme on Chemical Safety, World Health
    Organization, Geneva, Switzerland, in order that they may be
    included in corrigenda, which will appear in subsequent volumes.


                                  * * *


         A detailed data profile can be obtained from the International
    Register of Potentially Toxic Chemicals, Palais des Nations, 1211
    Geneva 10, Switzerland (Telephone No. 7988400 or 7985850).

    ENVIRONMENTAL HEALTH CRITERIA FOR PLATINUM

         The WHO Task Group on Environmental Health Criteria for
    Platinum met in Rome, Italy, from 3 to 7 December 1990. Dr A. Mochi
    opened the meeting on behalf of the host country and Dr E. Smith
    welcomed the participants on behalf of the heads of the three IPCS
    cooperating organizations (UNEP/ILO/WHO). The Task Group reviewed
    and revised the draft monograph and made an evaluation of the risks
    for human health and the environment from exposure to platinum and
    certain platinum salts.

         The first draft of this document was prepared by Dr G. Rosner,
    Dr H.P. König, and Dr D. Coenen-Stass, Fraunhofer Institute for
    Toxicology and Aerosol Research, Hanover, Germany. The second draft
    was prepared by Dr G. Rosner following circulation of the first
    draft to IPCS contact points. Particularly valuable comments on the
    draft were made by the European Chemical Industry Ecology and
    Toxicology Centre (ECETOC), the US Environmental Protection Agency,
    Food and Drug Administration, National Institute of Occupational
    Safety and Health, and Centers for Disease Control, the United
    Kingdom Department of Health, and the National Institute of Public
    Health, Norway. Dr C.W. Bradford gave valuable assistance in
    verifying the nomenclature of platinum compounds. Dr E.M. Smith and
    Dr P.G. Jenkins, both members of the IPCS Central Unit, were
    responsible for the overall scientific content and technical
    editing, respectively, of this monograph. The efforts of all who
    helped in the preparation and finalization of the document are
    gratefully acknowledged.

                                    * * *

         Financial support for the meeting was provided by the Ministry
    of the Environment of Italy. The Centro Italiano Studi e Indagini
    undertook the organization and provision of meeting facilities.

         Partial financial support for the publication of this monograph
    was kindly provided by the United States Department of Health and
    Human Services, through a contract from the National Institute of
    Environmental Health Sciences, Research Triangle Park, North
    Carolina, USA - a WHO Collaborating Centre for Environmental Health
    Effects. 

    ABBREVIATIONS

    AAS       atomic absorption spectrometry
    BSA       bovine serum albumin
    DC        direct current
    DNA       deoxyribonucleic acid
    ESCA      electron spectroscopy for chemical analysis
    ETV       electrothermal vaporization
    HSA       human serum albumin
    ICP       inductively coupled plasma
    Ig        immunoglobulin
    LC        liquid chromatography
    LC50      median lethal concentration
    MeB12     methylcobalamin
    MS        mass spectrometry
    OVA       ovalbumin
    PCA       passive cutaneous anaphylaxis
    PGM       platinum-group metals
    PIXE      proton-induced X-ray emission
    PSH       platinum salt hypersensitivity
    RAST      radioallergosorbent test
    TLV       threshold limit value
    TWA       time-weighted average
    UV        ultraviolet

    MOLECULAR FORMULAE OF PLATINUM COMPOUNDS

    PtO                           platinum(II) oxide
    PtO2                          platinum(IV) oxide
    PtCl2                         platinum(II) chloride
    PtCl4                         platinum(IV) chloride
    Pt(NO3)2                      platinum(II) nitrate
    Pt(SO4)2                      platinum(IV) sulfate
    H2[PtCl4]                     hydrogen tetrachloroplatinate(II)
    H2[PtCl6]                     hydrogen hexachloroplatinate(IV) 
                                  (commonly known as hexachloroplatinic
                                  acid)
    H2[Pt(NO2)2SO4]               hydrogen
    dinitrosulfatoplatinate(II)
     cis-[PtCl2(NH3)2]              cis-
    diamminedichloroplatinum(II)
                                  (commonly known as cisplatin)
     trans-[PtCl2(NH3)2]            trans-
    diamminedichloroplatinum(II)
    [Pt(NH3)4]Cl2                 tetraammineplatinum(II) chloride
    [Pt(NO2)2(NH3)2]              diamminedinitroplatinum(II)
    [Pt(C5H7O2)2]                 bis(pentane-2,4-
    dionato)platinum(II)
                                  (commonly known as
                                  bis(acetylacetonato)platinum(II))
    [Pt{NH2)2CS}4]Cl2             tetrakis(thiourea)platinum(II)

                                  dichloride
    K2[PtCl4]                     potassium tetrachloroplatinate(II)
    K2[PtCl6]                     potassium hexachloroplatinate(IV)
    K2[Pt(CN)4]                   potassium tetracyanoplatinate(II)
    K[PtCl3(NH3)]                 potassium amminetrichloroplati
    nate(II)
    K2[Pt(NO2)4]                  potassium tetranitroplatinate(II)
    Na2[PtCl4]                    sodium tetrachloroplatinate(II)
    Na2[PtCl6]                    sodium hexachloroplatinate(IV)
    Na2[Pt(Oh)6]                  sodium hexahydroxyplatinate(IV)
    Na[Pt(NH3)Cl3]                sodium
    amminetrichloroplatinate(II)
    (NH4)2[PtCl4]                 ammonium
    tetrachloroplatinate(II)
    (NH4)2[PtCl6]                 ammonium hexachloroplatinate(IV)
    Cs2[Pt(NO2)Cl3]               cesium
    trichloronitroplatinate(II) 
    Cs2[Pt(NO2)2Cl2]              cesium
    dichlorodinitroplatinate(II) 
    Cs2[Pt(NO2)3Cl]               cesium
    chlorotrinitroplatinate(II) 

    1.  SUMMARY

    1.1  Identity, physical and chemical properties, analytical methods

         Platinum (Pt) is a malleable, ductile, silvery-white noble
    metal with the atomic number 78 and an atomic weight of 195.09. It
    occurs naturally mainly as the isotopes 194Pt (32.9%), 195Pt
    (33.8%), and 196Pt (25.3%). In platinum compounds the maximum
    oxidation state is +6, while the states +2 and +4 are the most
    stable.

         The metal does not corrode in air at any temperature, but can
    be affected by halogens, cyanides, sulfur, molten sulfur compounds,
    heavy metals, and hydroxides. Digestion with aqua regia or Cl2/HCl
    (concentrated hydrochloric acid through which chlorine is bubbled)
    produces hexachloroplatinic acid, H2[PtCl6], an important
    platinum complex. When heated the ammonium salt of
    hexachloroplatinic acid produces a grey platinum sponge. A
    dispersive, black powder ("platinum black") results from reduction
    in aqueous solution.

         The chemistry of platinum compounds in aqueous solution is
    dominated by the complex compounds. Many of the salts, particularly
    those with halogen- or nitrogen-donor ligands, are water-soluble.
    Platinum, like the other platinum-group metals, has a pronounced
    tendency to react with carbon compounds, especially alkenes and
    alkynes, forming Pt(II) coordination complexes.

         There are various analytical methods for the determination of
    platinum. Atomic absorption spectrometry (AAS) and plasma emission
    spectroscopy provide high selectivity and specificity and are the
    method of choice for analysing platinum in biotic and environmental
    samples. With these methods detection limits of a few µg/kg or
    µg/litre have been obtained for various media.

         Inductively coupled argon plasma atomic emission spectroscopy
    is superior to electrothermal AAS because of lower matrix effects
    and the possibility of simultaneous multi-element analysis.

    1.2  Sources of human and environmental exposure

         The average concentration of platinum in the lithosphere or
    rocky crust of the earth is estimated to be in the region of
    0.001-0.005 mg/kg. Platinum is found either in the metallic form or
    in a number of mineral forms. Economically important sources exist
    in the Republic of South Africa and in the USSR. The platinum
    content of these deposits is 1-500 mg/kg. In Canada, platinum-group
    metals (platinum, palladium, iridium, osmium, rhodium, ruthenium)
    are found in copper-nickel sulfide ores at an average concentration
    of 0.3 mg/kg, but are concentrated to above 50 mg/kg during the

    refining of copper and nickel. Small amounts are mined in the USA,
    Ethiopia, the Philippines, and in Colombia.

         World mine production of platinum-group metals, of which 40-50%
    is platinum, has steadily increased during the last two decades. In
    1971, production was 127 tonnes (51-64 tonnes of platinum).
    Following the introduction of the automobile exhaust gas catalyst,
    world mine production of platinum-group metals increased to
    approximately 270 tonnes (108-135 tonnes of platinum) in 1987. In
    1989, total platinum demand in the western world was approximately
    97 tonnes.

         The principal use of platinum derives from its exceptional
    catalytic properties. Further industrial applications relate to
    other outstanding properties, particularly resistance to chemical
    corrosion over a wide temperature range, high melting point, high
    mechanical strength, and good ductility. Platinum is also used in
    jewellery and dentistry.

         Specific complexes of platinum, particularly  cis-
    diamminedichloroplatinum(II) (cisplatin), are used
    therapeutically.a

         Data on emissions of platinum to the environment from
    industrial sources are not available. During the use of platinum-
    containing catalysts, some platinum may escape into the environment,
    depending on the type of catalyst. Of the stationary catalysts used
    in industry, only those used for ammonia oxidation emit significant
    amounts of platinum.

         Automobile catalysts are mobile sources of platinum. According
    to limited data, platinum attrition from the old pellet-type
    catalyst is between 0.8 and 1.9 µg per km travelled. About 10% of
    the platinum is water-soluble. 

             

    a    This monograph is specifically concerned with platinum and
         selected platinum compounds of occupational and/or
         environmental importance. A detailed discussion of the toxic
         effects of the anticancer drug cisplatin and its analogues in
         humans and animals is beyond the selected scope of the
         Environmental Health Criteria series as these substances are
         used primarily as therapeutic agents. In addition, their toxic
         properties are exceptional compared to those of other platinum
         compounds.

         With the new generation of monolith-type catalyst, results from
    engine test stand experiments with a three-way catalyst indicate
    that total platinum emission is lower by a factor of 100-1000 than
    in the case of pellet-type catalysts. At simulated speeds of 60,
    100, and 140 km/h, total platinum emission was found to be between 3
    and 39 ng/m3 in the exhaust gas, corresponding to about 2-39 ng
    per km travelled. The mean aerodynamic diameter of emitted particles
    was between 4 and 9 µm in different test runs. There is limited
    evidence that most of the platinum emitted is in the form of the
    metal or surface-oxidized particles.

    1.3  Environmental transport, distribution, and transformation

         Platinum-group metals are rare in the environment, in
    comparison with other elements. In highly industrialized areas,
    elevated amounts of platinum can be found in river sediments. It is
    assumed that organic matter, e.g., humic and fulvic acids, binds
    platinum, aided perhaps by appropriate pH and redox potential
    conditions in the aquatic environment.

         In soil, the mobility of platinum depends on the pH, redox
    potential, chloride concentrations of soil water, and the mode of
    occurrence of platinum in the primary rock. It is considered that
    platinum will be mobile only in extremely acid conditions or in soil
    water with a high chloride content.

         In  in vitro test systems it has been demonstrated that some
    platinum(IV) complexes, in the presence of platinum(II), can be
    methylated by bacterial methylcobalamin under abiotic conditions.

    1.4  Environmental levels and human exposure

         The data base concerning environmental concentrations is
    extremely limited due to the very low levels of platinum in the
    environment and the associated analytical problems.

         Concentrations in ambient air samples taken near freeways in
    the USA before the introduction of the automobile catalyst were
    below the detection limit of 0.05 pg/m3. Some recent data from
    Germany indicate that close to roads the platinum air concentrations
    (particulate samples) range from < 1 pg/m3 to 13 pg/m3. In
    rural areas the concentrations were of a similar order of magnitude
    (< 0.6 to 1.8 pg/m3).

         Ambient air concentrations of platinum close to roads resulting
    from the introduction of pellet-type automobile catalysts have been
    estimated on the basis of dispersion models and experimental
    emission data. Estimated platinum concentrations near and on roads
    ranged from 0.005 to 9 ng per m3 for total platinum. As the total
    platinum emission from a monolith-type catalyst is lower, probably
    by a factor of 100 to 1000, than that of a pellet-type catalyst, the

    platinum concentrations for this type of catalyst would be in the
    picogram to femtogram per m3 range.

         In roadside dust deposited on broad-leaved plants at various
    sites in California, concentrations of 37-680 µg per kg dry weight
    were detected. Although the number of samples was limited, the
    results indicate that automotive catalysts release platinum to the
    roadside environment. 

         In plant chamber experiments, grass cultures exposed for four
    weeks to slightly diluted exhaust gas from an engine equipped with a
    three-way catalyst (simulated speed: 100 km/h) contained no platinum
    at a detection limit of 2 ng/g dry weight.

         Investigations of the platinum concentrations in Lake Michigan
    sediments led to the conclusion that platinum has been deposited
    there over the past 50 years at a fairly uniform rate.
    Concentrations in sediment cores of 1 to 20 cm varied only between
    0.3 and 0.43 µg/kg dry weight. 

         While no platinum levels have been reported for fresh waters,
    high concentrations (730 to 31 220 µg/kg dry weight) have been found
    in the sediments of a highly polluted cut-off channel of the Rhine
    river, Germany.

         Samples of limber pines contained platinum levels ranging
    between non-detectable and 56 µg/kg (ash weight). However, the
    content of the adjacent soils was in the same range, and no
    accumulation tendency was indicated by these limited data.

         In isolated samples of plants from an ultrabasic soil, platinum
    levels of 100-830 µg/kg (dry weight) were found.

         Sea-water samples have been found to contain between 37 and 332
    pg/litre. In sediment cores from the Eastern Pacific, platinum
    concentrations varied between 1.1 and 3 µg/kg (dry weight). The
    highest concentration (21.9 µg per kg) was found in offshore ocean
    sediments. In marine macroalgae, platinum concentrations of between
    0.08 and 0.32 µg/kg dry weight have been found.

         Blood platinum levels of 0.1 to 2.8 µg/litre have been found in
    the general population. In sera from occupationally exposed workers,
    levels of 150 to 440 µg per litre have been reported.

         The data base for platinum concentrations at the workplace is
    limited. Due to analytical shortcomings, older data (0.9 to 1700
    µg/m3) are probably not reliable. However, from these data it can
    be assumed that exposure to platinum salts was higher than the
    occupational exposure limit of 2 µg/m3 currently adopted by most
    countries. In recent workplace studies, concentrations either below

    the detection limit of 0.05 µg/m3 or between 0.08 and 0.1 µg/m3
    have been measured.

    1.5  Kinetics and metabolism

         Following a single inhalation exposure (48 min) to different
    chemical forms of platinum (5-8 mg/m3), most of the inhaled
    191Pt was rapidly cleared from the body. This was followed by a
    slower clearance phase during the remaining post-exposure period.
    Ten days after exposure to 191PtCl4, 191Pt(SO4)2,
    191PtO2, and 191Pt metal, whole body retention of 191Pt was
    approximately 1, 5, 8, and 6%, respectively, of the initial body
    burden. Most of the 191Pt that was cleared from the lungs by
    mucociliary action and swallowed was excreted via the faeces (half-
    time, 24 h). A small fraction of the 191Pt was detected in the
    urine, indicating that very little was absorbed in the lungs and the
    gastrointestinal tract.

         In a comparative study on the fate of 191PtCl4 in rats (25
    µCi/animal) following different routes of exposure, retention was
    highest after intravenous administration, followed by intratracheal
    exposure. It was lowest after oral administration. Since only a
    minute amount of the 191PtCl4 given orally was absorbed, most of
    it passed through the gastrointestinal tract and was excreted via
    the faeces. After 3 days, less than 1% of the initial dose was
    detected in the whole body. Following intravenous administration,
    191Pt was excreted in almost equal quantities in both faeces and
    urine. Elimination was slower than after oral dosing. After 3 days
    whole body retention was about 65%, and after 28 days it was still
    14% of the initial dose. For comparison, after these periods about
    22% and 8%, respectively, were retained by the body following
    intratracheal administration.

         Principal deposition sites are the kidneys, liver, spleen, and
    adrenals. The high amount of 191Pt found in the kidney shows that
    once platinum is absorbed most of it accumulates in the kidney and
    is excreted in the urine. The lower level in the brain suggests that
    platinum ions cross the blood-brain barrier only to a limited
    extent. 

         In contrast to the water-soluble salts, the insoluble PtO2
    was only taken up in minute amounts even though the salt was
    administered in the diet at an extremely high level, which resulted
    in a total platinum consumption of 4308 mg per rat over the 4-week
    period.

         For both the simple platinum salts and cisplatin, it has been
    established that there is an initial rapid clearance followed by a
    prolonged clearance phase during the remaining post-exposure period,
    and that there is no evidence for markedly different retention
    profiles. However, cisplatin is, due to high chloride concentrations

    suppressing hydration, very stable in extracellular fluids. This
    explains why it is excreted mainly in the unchanged form. Its
    excretion, in contrast to that of the simple platinum salts, is
    primarily via the urine.

    1.6  Effects on laboratory mammals and in vitro test systems

         The acute toxicity of platinum depends mainly on the platinum
    species. Soluble platinum compounds are much more toxic than
    insoluble ones. For example, oral toxicity to rats (LD50 values)
    decreased in the following order: Na2[PtCl6] (25-50 mg/kg) >
    (NH4)2[PtCl6] (195-200 mg/kg) > PtCl4 (240 mg/kg) >
    Pt(SO4)2.4H2O (1010 mg/kg) > PtCl2 (> 2000 mg/kg) >
    PtO2 (> 8000 mg/kg). For the two latter compounds no LD50 could
    be calculated.

         In skin testing of albino rabbits, PtO2, PtCl2,
    K2[PtCl4], [Pt(NO2)2(NH3)2], Pt(C5H7O2)2 and
     trans-[PtCl2(NH3)2] were graded as non-irritant.
    (NH4)2[PtCl6], (NH4)2[PtCl4], Na2[PtCl6],
    Na2[Pt(OH)6], K2[Pt(CN)4], [Pt(NH3)4]Cl2, and
     cis-[PtCl2(NH3)2] appeared to be irritant, but to various
    degrees.

         In eye irritation tests all tested platinum compounds showed
    irritating effects.  Trans-[PtCl2(NH3)2] and
    (NH4)2[PtCl4] were found to be corrosive.

         Intense breathing difficulties were observed after the
    intravenous injection of chloro-platinum complexes into guinea-pigs
    and rats, presumably due to non-allergic histamine release. This
    nonspecific histamine release has complicated the interpretation of
    both animal and human studies with respect to the diagnosis of
    allergic sensitization.

         After subcutaneous and intravenous injection of Pt(SO4)2
    three times a week for 4 weeks, there was no induction of an
    allergic state, as measured by skin tests (guinea-pigs and rabbits),
    passive transfer, and footpad tests (mice). Administration of
    platinum-egg-albumin complex also failed to sensitize the
    experimental animals. 

         Attempted sensitization of female hooded Lister rats with the
    free salt of ammonium tetrachloroplatinate, (NH4)2[PtCl4],
    applied via the intraperitoneal, intramuscular, intradermal,
    subcutaneous, intratracheal, and footpad routes, together with
     Bordetella pertussis adjuvant, was unsuccessful, as shown by the
    direct skin test, passive cutaneous anaphylaxis (PCA) test or a
    radio-allergosorbent test (RAST). However, with platinum-protein
    conjugates positive PCA results have been reported.

         In Cynomolgus monkeys  (Macaca fasicularis) exposed to sodium
    hexachloroplatinate, Na2[PtCl6], by nose-only inhalation at a
    level of 200 µg/m3, 4 h/day, biweekly for 12 weeks, significantly
    greater pulmonary deficits were observed by comparison with control
    animals. With exposure to ammonium hexachloroplatinate,
    (NH4)2[PtCl6], only concomitant exposure to ozone (2000
    µg/m3) produced significant skin hypersensitivity and pulmonary
    hyper-reactivity.

         In oral studies with male Sprague-Dawley rats, the salts
    PtCl4 (182 mg/litre drinking-water) and Pt(SO4)2.4H2O (248
    mg/litre) did not affect normal weight gain within the observation
    period of 4 weeks. With a 3-fold increase in platinum concentration,
    weight gain was reduced by about 20% only during the first week,
    paralleling a 20% decrease in feed and water consumption.

         Only limited experimental data are available for platinum
    effects on reproduction, embryotoxicity, and teratogenicity.
    Pt(SO4)2 (200 mg Pt/kg) caused reduced offspring weight in Swiss
    ICR mice from day 8 to 45 post-partum. The main effect of
    Na2[PtCl6] (20 mg Pt/kg) was a reduced activity level of the
    offspring of mothers exposed on the 12th day of gestation. Solid
    platinum wire or foil is considered to be biologically inert and
    adverse effects following implantation into the uterus of rats and
    rabbits were probably due to the physical presence of a foreign
    object.

         After intravenous administration of 191PtCl4 to pregnant
    rats (25 µCi/animal) on day 18 of gestation, the placental barrier
    was crossed to a limited extent.

         Several platinum compounds have been found to be mutagenic in a
    number of bacterial systems. In comparative studies cisplatin was
    several times more mutagenic than other tested platinum salts. In
     in vitro studies with mammalian cells (CHO-HGPT-system), the
    relative mutagenic activity of  cis-PtCl2(NH3)2],
    K[PtCl3(NH3)], and [Pt(NH3)3Cl]Cl was 100:9:0.3. The
    mutagenicity of K2[PtCl4] and  trans-[PtCl2(NH3)2] was
    marginal, whereas [Pt(NH3)4]Cl2 was not mutagenic. No
    mutagenic activity was observed for the compounds K2[PtCl4] and
    [Pt(NH3)4]Cl2 in the  Drosophila melanogaster sex-linked
    recessive lethal test, a mouse micronucleus test, and the Chinese
    hamster bone marrow test.

         Except for cisplatin, no experimental data are available for
    the carcinogenicity of platinum and platinum compounds. For
    cisplatin there is sufficient evidence for carcinogenic effects on
    animals. However, cisplatin and its analogues are rather exceptional
    by comparison with other platinum compounds. This is reflected in
    the unique mechanism for their anti-tumour activity. Intrastrand DNA
    cross-links, formed only by the cis isomer at a certain position of

    guanine, are regarded as reasons for this anti-tumour activity. It
    appears that replication of DNA in cancer cells is impaired, while
    in normal cells the cisplatin lesions on guanine are repaired before
    replication.

    1.7  Effects on humans

         Exposure to platinum salts is mainly confined to occupational
    environments, primarily to platinum metal refineries and catalyst
    manufacture plants.

         The compounds mainly responsible for platinum salt
    hypersensitivitya are hexachloroplatinic acid, H2[PtCl6], and
    some chlorinated salts such as ammonium hexachloroplatinate,
    (NH4)2[PtCl6], potassium tetrachloroplatinate, K2[PtCl4],
    potassium hexachloroplatinate, K2[PtCl6], and sodium
    tetrachloroplatinate, Na2[PtCl4]. Complexes where there are no
    halogen ligands coordinated to platinum ("non-halogenated
    complexes"), such as K2[Pt(NO2)4], [Pt(NH3)4]Cl2 and
    [Pt{(NH2)2CS}4]Cl2, and neutral complexes such as  cis-
    [PtCl2(NH3)2], are not allergenic, since they probably do not
    react with proteins to form a complete antigen.

         The signs and symptoms of hypersensitivity include urticaria,
    contact dermatitis of the skin, and respiratory disorders ranging
    from sneezing, shortness of breath, and cyanosis to severe asthma.
    The latency period from the first contact with platinum to the
    occurrence of the first symptoms varies from a few weeks to several
    years. Once sensitization is established, symptoms tend to become
    worse as long as the workers are exposed in the workplace but
    usually disappear on removal from exposure. However, if long-
    duration exposure occurs after sensitization, individuals may never
    become completely free of symptoms. 

         Although no unequivocal exposure concentration-effect
    relationship can be deduced from the available literature, the risk
    of developing platinum salt sensitivity seems to be correlated with
    exposure intensity. Metallic platinum seems to be non-allergenic.
    With the exception of one single reported case of an alleged contact
    dermatitis from a "platinum" ring, no allergic reactions have been
    reported.

                      

    a    The term "platinosis" is no longer used for platinum-salt-
         related disease, as it implies a chronic fibrosing lung disease
         such as silicosis. Instead, "platinum salt allergy", "allergy
         to platinum compounds containing reactive halogen ligands", and
         "platinum salt hypersensitivity" (PSH) have been used, the last
         being preferred.

         The clinical manifestations of platinum salt hypersensitivity
    reflect a true allergic response. The mechanism appears to be a type
    I (IgE mediated) response. The possibility of IgE antibodies to
    platinum chloride complexes developing in sensitive people has been
    assumed on the grounds of  in vivo and  in vitro tests. It is
    believed that the platinum salts of low relative molecular mass act
    as haptens that combine with serum proteins to form the complete
    antigen.

         Skin prick tests with dilute concentrations of soluble platinum
    complexes appear to provide reproducible, reliable, reasonably
    sensitive, and highly specific biological monitors of allergenicity.
    The compounds used for routine screening of exposed workers are
    (NH4)2[PtCl6], Na2[PtCl6], and Na2[PtCl4]. The
    sensitivity and reliability of the skin prick test has not been
    achieved by any  in vitro test available. In enzyme immunoassays
    and in radioallergosorbent tests (RAST), IgE antibodies specific to
    platinum chloride complexes have been found. Although a correlation
    with the results of prick tests was reported, the applicability of
    RAST for screening purposes was questioned because of its
    nonspecificity.

         Only limited cross-reactivity between platinum and palladium
    salts has been found in skin testing and RAST. Reactions to the
    platinum-group metals other than platinum have only been seen in
    individuals sensitive to platinum salts.

         Smoking, atopy, and nonspecific pulmonary hyper-reactivity have
    been associated with platinum salt hypersensitivity and could be
    predisposing factors.

         For the general population, there is a lack of data on the
    actual exposure situation in countries where the automobile catalyst
    has been introduced. The possible ambient air concentrations,
    estimated on the basis of a few emission data and dispersion models,
    are at least a factor of 10 000 lower than the occupational exposure
    limit value of 1 mg/m3 adopted by some countries for platinum
    metal as total inhalable dust. Since the emitted platinum is most
    probably in the metallic form, the sensitizing potential of platinum
    emissions from automotive catalysts is probably very low. Even if
    part of the platinum emitted was soluble and potentially allergenic,
    the safety margin to the occupational exposure limit for soluble
    platinum salts (2 µg/m3) would be at least 2000.

         In a preliminary immunological study, extracts of particulate
    automobile exhaust samples were tested on three human volunteer
    subjects using a skin prick test. No positive response was elicited.

         No data are available to assess the carcinogenic risk of
    platinum or its salts to humans. With regard to cisplatin, evidence
    for human carcinogenicity is considered inadequate.

    1.8  Effects on other organisms in the laboratory and field

         Simple complexes of platinum have bactericidal effects. The
    discovery that neutral complexes such as cisplatin selectively
    inhibit cell division without reducing cell growth of a variety of
    gram-positive, and especially, of gram-negative bacteria has led to
    their application in medicine as anti-tumour agents.

         Growth and yield of the green alga  Euglena gracilis were
    inhibited by the soluble hexachloroplatinic acid (250, 500, and 750
    µg/litre) in a laboratory "microcosm". Cisplatin caused chlorosis
    and stunted growth in the water hyacinth  Eichhornia crassipes at a
    concentration of 2.5 mg/litre.

         A 3-week exposure to hexachloroplatinic acid, H2[PtCl6],
    resulted in an LC50 value of 520 µg Pt per litre in the
    invertebrate  Daphnia magna. At concentrations of 14 and 82
    µg/litre, reproduction, measured as total number of young, was
    impaired by 16 and 50%, respectively.

         After short-term exposure to tetrachloroplatinic acid,
    H2[PtCl4], in a static bioassay, 24-, 48-, and 96-h LC50
    values of 15.5, 5.2, and 2.5 mg Pt/litre, respectively, were found
    for the coho salmon  (Oncorhynchus kisutch). General swimming
    activity and opercular movement were affected at 0.3 mg/litre.
    Lesions in the gills and the olfactory organ were noted at 0.3
    mg/litre or more. Concentrations of 0.03 and 0.1 mg/litre had no
    effect. 

         There have been studies on the effects of platinum on
    terrestrial plants, all conducted with soluble platinum chlorides.
    The growth of beans and tomato plants in sand culture was inhibited
    by hexachloroplatinic acid at concentrations of 3 x 10-5 to 15 x
    10-5 mol/kg (5.9-29.3 mg/kg). Of nine horticultural crops grown in
    hydroponic solution with platinum tetrachloride, PtCl4 (0.057,
    0.57, and 5.7 mg Pt/litre), dry weights were significantly reduced
    in tomato, bell pepper, and turnip tops, and in radish roots at the
    highest concentration. At this level, the buds and immature leaves
    of most species became chlorotic. In some of the species the low
    levels of PtCl4 had a stimulatory effect on growth. In addition,
    transpiration was suppressed at the highest platinum concentration,
    probably due to increased stomatal resistance. Growth stimulation
    was also observed at low levels of platinum (0.5 mg Pt/litre),
    administered as potassium tetrachloroplatinate, K2[PtCl4], in
    seedlings of the South African grass species  Setaria verticillata
    grown in nutrient solution. After two weeks, the length of the
    longest roots had increased by 65%. At the highest concentration
    applied, i.e. 2.5 mg Pt/litre, phytotoxic effects were seen in the
    form of stunted root growth and chlorosis of the leaves.

    2.  IDENTITY, PHYSICAL AND CHEMICAL PROPERTIES, ANALYTICAL METHODS

    2.1  Identity

         Platinum is a malleable, ductile, silvery-white noble metal
    with the atomic number 78 and an atomic weight of 195.09. It occurs
    naturally mainly as the isotopes 194Pt (32.9%), 195Pt (33.8%),
    and 196Pt (25.3%). In platinum compounds, the maximum oxidation
    state is +6, while the states +2 and +4 are the most stable.

         The most important platinum compounds are listed in Table 1.

    2.2  Physical and chemical properties

    2.2.1  Platinum metal

         The metal does not corrode in air at any temperature, but can
    be affected by halogens, cyanides, sulfur, molten sulfur compounds,
    heavy metals, and hydroxides. Digestion with aqua regia or Cl2/HCl
    (concentrated hydrochloric acid through which chlorine gas is
    bubbled) leads to hexachloroplatinic acid, H2[PtCl6], an
    important platinum complex.

         Platinum has a coefficient of expansion almost equal to that of
    sodium-calcium-silicate glass and the two materials can be used in
    combination, e.g., in electrodes. 

         Some chemical and physical data on platinum and selected
    compounds are listed in Table 2.

    2.2.2  Platinum compounds

         The chemistry of platinum compounds in aqueous solution is
    dominated by the complex compounds. Many of the salts, particularly
    those with halogen- or nitrogen-donor ligands, are water-soluble. In
    biochemical processes, cis-trans effects in the quadratic
    coordination of platinum play an important role. Platinum, like the
    other platinum-group metals (PGM), has a marked tendency to react
    with carbon compounds, especially alkenes and alkynes, forming
    Pt(II) coordination complexes.


    
    Table 1.  Chemical names, synonyms, and formulae of elemental platinum and platinum compoundsa
                                                                                                                                    
    Chemical name                      CAS registry numberb     Synonyms                                          Formula
                                                                                                                                    
    Element
      Platinum                               7440-06-4                                                            Pt

    Binary compounds
      Platinum(II) chloride                 10025-65-7          platinous chloride                                PtCl2
      Platinum(IV) chloride                 13454-96-1          platinum tetrachloride                            PtCl4
      Platinum(II) oxide                    n.a.                platinous oxide                                   PtO
      Platinum(IV) oxide                     1314-15-4          platinic oxide; platinum dioxide                  PtO2
      Platinum sulfate                      n.a.                -                                                 Pt(SO4)2.4H2O
      Platinum nitratec                     n.a.                -                                                 Pt(NO3)2

    Coordination complexes
      Hexachloroplatinic acid(IV)           16941-12-1          chloroplatinic acid; dihydrogen                   H2[PtCl6]
                                                                hexachloroplatinate
      Sodium hexachloroplatinate(IV)        16923-58-3          disodium hexachloroplatinate;                     Na2[PtCl6]
                                                                sodium chloroplatinate
      Potassium hexachloro-                 16921-30-5          potassium chloroplatinate; platinic               K2[PtCl6]
        platinate(IV)                                           potassium chloride
      Potassium tetrachloro-                10025-99-7          platinum potassium chloride;                      K2[PtCl4]
        platinate(II)                                           potassium platinochloride
      Ammonium tetrachloroplatinate(II)     13820-41-2          ammonium platinous chloride;                      (NH4)2[PtCl4]
                                                                ammonium chloroplatinite
      Ammonium hexachloroplatinate(IV)      16919-58-7          ammonium platinic chloride;                       (NH4)2[PtCl6]
                                                                ammonium chloroplatinate; "yellow salt"
      cis-Diamminedichloroplatinum(II)      15663-27-1          cisplatin; cis-platinum; DDP; CDDP;               cis-[PtCl2(NH3)2]
                                                                CPDD; CACP; CPCC; Peyron's chloride
      trans-Diamminedichloroplatinum(II)    14913-33-8          trans-dichlorodiammineplatinum(II)                trans-[Pt(NH3)2Cl2]
                                                                                                                                    

    a    From: Windholz (1976); Weast & Astle (1981)
    b    n.a. = not available
    c    Kral & Peter (1977)

    Table 2.  Physical and chemical properties of platinum and selected platinum compoundsa

                                                                                                                                     

                                         Relative
                                         atomic/    Melting    Boiling   Relative   Crystalline               Solubilityd
    Chemical name                        molecular  pointb     point     density    formc             Cold      Hot      Other
                                         mass       (°C)       (°C)      (g/cm3)                      water     water    solvents
                                                                                                                                     

    Platinum (Pt)                        195.09     1772       3827      21.4520    silver-metallic   ins       ins      sol aq.
                                                               (± 100)              cubic cr.                            regia

    Platinum(II) chloride                266.00     581b                 6.05       olive-green,                         ins al, eth;
      (PtCl2)                                       (in Cl2)                        hexagonal cr.     sl sol             sol H5Cl,
                                                                                                                         NH4OH

    Platinum(IV)                         336.90     370b                 4.303      brown-red cr.     v sol     v sol    sl sol,
      chloride (PtCl4)                              (in Cl2)                                                             al, NH3

    Platinum(IV) oxide (PtO2)            227.03     450                  10.2       black powder      ins       ins      ins acid,
                                                                                                                         aq. regia

    Platinum(II) oxide (PtO)             211.09     550b                 14.9       violet-black      ins       ins      sol HCl;
                                                                                    cr.                                  ins aq.
                                                                                                                         regia

    Platinum sulfate                     459.27                                     yellow plates     sol       dec      sol al,
      (Pt(SO4)2.4H2O)                                                                                                    eth, acid

    Hexachloroplatinic                   517.92     60                   2.431      red-brown         v sol     v sol    sol al, eth
      acid(IV)                                                                      deliquescent
      (H2[PtCl6].6H2O)                                                              cr.

    Sodium hexachloroplatinate(IV)       453.77                                     yellow,           sol                sol al
      (Na2[PtCl6])                                                                  hygroscopic cr.

    Table 2 (contd).

                                                                                                                                     

                                         Relative
                                         atomic/    Melting    Boiling   Relative   Crystalline               Solubilityd
    Chemical name                        molecular  pointb     point     density    formc             Cold      Hot      Other
                                         mass       (°C)       (°C)      (g/cm3)                      water     water    solvents
                                                                                                                                     

    Potassium hexachloroplatinate(IV)    486.03                          3.50       orange-yellow     sl sol    sol      ins al
      (K2[PtCl6])                                                                   cr. or yellow
                                                                                    powder

    Potassium tetrachloroplatinate(II)   415.26                                     ruby-red cr.      sol
      (K2[PtCl4])

    Ammonium tetrachloroplatinate(II)    373.00                                     dark ruby-red     sol
      ((NH4)2[PtCl4])                                                               cr.

    Ammonium hexachloroplatinate(IV)     443.91                          3.06       orange-red cr.    v sol              ins al
      ((NH4)2[PtCl6])                                                               or yellow powder

    cis-Diamminedichloroplatinum(II)     300.07     270b                            orange cr.        sl sole
      (cis-[PtCl2](NH3)2)

    trans-Diamminedichloroplatinum(II)   300.07
      (trans-[PtCl2](NH3)2)
                                                                                                                                     

    a Compiled from:  Windholz (1976);  Weast & Astle (1981);  Neumüller (1987).
    b dec = decomposes
    c cr. = crystals
    d al = alcohol (ethanol); dec = decomposes; eth = ether; ins = insoluble; sl = slightly;  sol = soluble; v = very
    e Tobe & Khokhar (1977)


    
         Platinum hexafluoride, PtF6, has the highest oxidation state
    of the element and is a strong oxidizing agent; the noble gas xenon
    can be oxidized to XeF2 and oxygen to O2+ (Hoppe, 1965).

         Hexachloroplatinic acid, H2[PtCl6], is formed by the
    reaction of platinum metal with aqua regia or Cl2/HCl. When
    heated, the ammonium salt of this acid produces a grey platinum
    sponge. A black powder ("platinum black") is produced by reduction
    in aqueous solution. Depending on the pH value, hydroxides exchange
    the halogen ligands with OH- in a stepwise manner, leading to
    PtO2.nH2O after dehydration (n = 1, 2, 3, 4). Further heating
    gives rise to PtO at 400 °C, which decomposes to platinum and O2
    at 560 °C.

         By heating hexachloroplatinic acid at 240 °C, PtCl2 can be
    obtained. It has a hexameric structure (Pt6Cl12) in the solid
    state and is soluble in benzene. This compound forms H2[PtCl4]
    in HCl.

         Platinum forms a large number of Pt(II) and Pt(IV) complexes
    with the formulae: 

    Pt(IV):  [PtX6-n(NH3)n]n-2 where n = 0-6; X = halogen ligand
    Pt(II):  [PtX4-n(NH3)n]n-2 where n = 0-4; X = halogen ligand

         The chemical structures of two of the more important platinum
    complexes are shown below.

    FIGURE 01

    2.3  Conversion factors

         Platinum  1 ppm = 7.98 mg/m3
                   1 mg/m3 = 0.13 ppm

    2.4  Analytical methods

    2.4.1  Sampling

         Samples of ores, minerals, and preconcentrated technical
    products can be obtained in a ground or powdered form. Metals and
    alloys can be collected as chips and shavings. Platinum on alumina
    pellets or monolithic supports must be comminuted before fusing or
    digesting (Potter & Lange, 1981). Electronic scrap may contain
    alloyed copper, nickel or lead. Melting with aluminium leads to a
    brittle alloy, which can be easily crushed to a powder.

         Blood samples may be frozen and lyophilized (Pera & Harder,
    1977), homogenized with substances like TRITON-X 100(R) (Priesner
    et al., 1981), and separated into plasma ultrafiltrate and proteins
    (Bannister et al., 1978) or, if appropriate, analysed directly
    without pretreatment.

         With biological materials, homogeneous sampling is difficult
    and often requires destructive methods resulting in the loss of all
    information about the platinum species. Only the total content of
    platinum and its isotopes can be determined.

         For the analysis of platinum in urine, the untreated original
    sample is usually unsuitable. Freeze-drying or a wet ashing
    procedure with subsequent reduction of volume is necessary for most
    analytical methods.

         Other biological and environmental materials being investigated
    for very low levels of platinum need to be sampled in large amounts,
    with possible difficulty in homogenisation, digestion, storage, and
    matrix effects. 

    2.4.2  Sample pretreatment

         Determination of total platinum content in some materials
    requires a digestion step, which is the pre-requisite for enrichment
    and separation from other elements and organic substances. A modern
    wet digestion procedure (Knapp, 1985) avoids contact with materials
    other than quartz in order to reduce adsorption losses. In this way,
    organic matter is destroyed most effectively and contamination with
    platinum from other sources is minimized (Würfels et al., 1987).

         In general, separation involves volatilization, distillation,
    lyophilization, extraction, coprecipitation, flotation, sorption,
    and other instrumental methods, such as electro-deposition,

    chromatographic separations, and thermal pre-treatment in atomic
    absorption spectroscopy (AAS) procedures (Knapp, 1984).

         A selection of extraction and sorption techniques is shown in
    Tables 3 and 4, respectively. For coprecipitation procedures,
    details can be found in the reports of Fryer & Kerrich (1978),
    Stockman (1983), Sighinolfi et al. (1984), Skogerboe et al. (1985),
    Amosse et al. (1986), and Bankovsky et al. (1987).

    2.4.3  Detection and measurement

    2.4.3.1  Spectrophotometry

         Unless the native soluble platinum compounds have an inherent
    absorption spectrum, they can be treated with inorganic and organic
    reagents to form coloured, soluble complexes that can be measured by
    absorption spectrophotometry. Careful separation from other elements
    is important (see section 2.4.2). The detection limits achieved are
    in the low mg/kg (ppm) range (Jones et al., 1977; Brajter & Kozicka,
    1979; Mojski & Kalinowski, 1980; Marone et al., 1981; Aneva et al.,
    1986; Puri et al., 1986).

    2.4.3.2  Radiochemical methods

         Neutron-activation analysis is a very sensitive method for
    determining submicrogram traces of platinum. It is at least one to
    several orders of magnitude more sensitive than the best of the
    spectrophotometric methods. For the determination of platinum a
    sensitivity of 1 ng absolute was estimated on irradiation of a
    sample for 1 month at a neutron flux of 10-2cm-2-second,
    followed by a 2-h decay (NAS, 1977).

         Radiochemical methods have been applied to the analysis of
    platinum in various matrices. The detection limits are 1-2 µg/kg in
    rock samples (Stockman, 1983), 30 µg per kg dry weight in plant
    material (Valente et al., 1982), 1-3 µg/kg dry weight (0.3 ng
    absolute) in plant material and animal tissue (Tjioe et al., 1984),
    and 100 µg/kg in airborne particulate matter (Schutyser et al.,
    1977).

    2.4.3.3  X-ray fluorescence spectroscopy

         This method permits the highly selective, sensitive, rapid, and
    non-destructive analysis of platinum. Zolotov et al. (1983) obtained
    a detection limit of 32 µg Pt per litre in aqueous solutions.

         A new variant, total-reflection X-ray fluorescence
    spectrometry, has the advantage of small sample size (5 to 40 µg)
    with low absolute detection limits (Von Bohlen et al. 1987).


    
    Table 3.  Extraction procedures for separating platinum
                                                                                                                                   
    Species     Matrix          Chemical modifier            Extraction          Elements               Reference
                                                             medium              separated
                                                                                                                                   

    Pt(IV)      aqueous         6 M HCl                      isopentanol         Al, Ca, Mg,            Aneva et al. (1986)
                solutions                                                        Mn, Ni, Cr
                                                             4-methyl-2-         Cu, Pb 
                                                             pentanone           (partially)

    Pt(IV)      aqueous         dithio-oxamide               tri-butyl           Ir(III), Rh(III)       Brajter & Kozicka (1979)
                solutions                                    phosphate

    Pt(IV)      plant-          S-(1-decyl)-                 variety of          co-extraction          Jones et al. (1977)
                processing      N,N -diphenyl-               organic liquids     of noble metals
                solutions       isothiouronium bromide

    Pt(IV)      palladium(II)   1,5-diphenylthiocarbazone    carbon              Pd(II)                 Marczenko & Kus (1987)
                chloride                                     tetrachloride

    Pt(IV)      palladium       triphenylphosphine           dichloroethane      Pd, Au                 Mojski & Kalinowski (1980)
                metal           oxide

    Pt(IV)      synthetic       phenanthraquinonemonoxime    molten              Fe, Cu, Ni, V,         Puri et al. (1986)
                aqueous                                      naphthalene         Cr, Al, Au, Ag
                solutions                                                        Ir, Rh, Pd

    Pt(IV)      aqueous         potassium butylxanthate      carbon              -                      Singh & Garg (1987)
                solutions                                    tetrachloride

    Pt(IV)      automotive      bis-(2-furyl)-               trichloromethane    V, Mo, W               Wiele & Kuchenbecker (1974)
                catalysts       glyoxaldioxime

    Pt(II),     synthetic       1,4,7,10,13,16-hexa-         4-methyl-2-         Fe(III)                Arpadjan et al. (1987)
    Pt(IV)      aqueous         azaoctadecane                pentanone
                solutions

    Table 3 (contd).
                                                                                                                                   
    Species     Matrix          Chemical modifier            Extraction          Elements               Reference
                                                             medium              separated
                                                                                                                                   

    Pt(II)      urine           Diethylammonium-             trichloromethane    Ca, Zn, Fe(II)         Borch et al. (1979)
                                diethyldithiocarbamate,                          and Mn(II)
                                NaSH

    Pt(II)      aqueous         sodium                                           co-extraction          Mueller & Lovett (1987)
                solutions       diethyldithiocarbamate                           of Pd(II),             
                                acetonitrile, NaCl                               Rh(II)

    Pt(II)      plasma          sodium                                           -                      Andrews et al. (1984)
                ultrafiltrate   diethyldithiocarbamate
                                methanol, H2O

    Pt          geological      sodium tetraborate,          molten lead         -                      Millard (1987)
                samples         KCN

    Pt          geological      KCN, KOH                     Ag, Au              co-extraction          Le Houillier & De Blois
                samples                                                          of noble metals        (1986)

    Pt          blood, hair,    HCl, SnCl2                   tri-n-octylamine,   -                      Tillery & Johnson (1975)
                faeces, urine                                xylene

    Pt          geological      sodium                       nickel sulfide      -                      Robert et al., (1971)
                samples         carbonate
                                and sodium
                                tetraborate
                                                                                                                                   

    Table 4.  Sorption techniques for preconcentrating platinum
                                                                                                                                     
    Species     Matrix        Sorption medium                Eluent              Elements              Reference
                                                                                 separated
                                                                                                                                     
    Pt          sea water     Bio-Rad Ag-1-X2                0.1 M HCl,          Ir                    Goldberg et al. (1986);
                                                             0.02 M thiourea                           Hodge et al. (1986)

    Pt          geological    Srafion NMRR                   0.01 M HCl,         high selectivity      Kritsotakis & Tobschall (1985)
                samples                                      5% thiourea         for transition
                                                                                 metals

    Pt          aqueous       polyethenimine-                                    Co(II), Zn, Cd,       Geckeler et al. (1986)
                solutions     methylthiourea                                     In(III), Na
                              suspended in water
                              at pH 1

    Pt(II),     aqueous       Dowex 2X-8                     75% NH3 in H2O      Au                    Kahn & Van Loon (1978)
    Pt(IV)      solutions

    Pt (IV)     geological    Bio-Rad Ag-50W-X8              0.1 M HCl           -                     Coombes & Chow (1979)
                samples

    Pt (IV)     geological    P-TD                           2 M HClO4           Al, Mg, Cu,           Grote & Kettrup (1987)
                samples                                                          Fe, Ni, Cr

    Pt (IV)     aqueous       Hyphan                         1 M HClO4           Na, K, Cs, Mg,        Kenawy et al. (1987)
                solutions                                                        Ca, Al

    Pt (IV)     geological    Polyorgs                       digestion HClO4,    coextraction          Myasoedova et al. (1985)
                samples,                                     H2SO4, HNO3         noble metals
                scaps

    Pt (IV)     aqueous       (-CH2-S-)n(n approx. 1000)     6 M HCl             Co, Ni, Pb, Fe,       Zolotov et al. (1983)
                solutions                                                        Zn, Cd

                                                                                                                                     


    
    2.4.3.4  Electron spectroscopy for chemical analysis (ESCA)

         ESCA is a technique typically applied in surface analysis
    involving a few surface atomic layers (1-2 nm). This technique is
    used for special purposes; for instance, Schlögl et al. (1987)
    analysed microparticles from automotive exhaust gas catalysts (see
    section 3.2.1.4).

    2.4.3.5  Electrochemical analysis

         Of the voltametric techniques available for element analysis,
    polarography, in particular, has been applied for the determination
    of platinum. Alexander et al. (1977a,b) described a pulse
    polarography method for the analysis of platinum in ores after fire-
    assay separation and preconcentration. By measuring the sensitive
    catalytic polarographic wave generated by the Pt(II)-ethylenediamine
    complex in alkali solutions a detection limit of 0.025 µg per kg was
    obtained. A similar technique was applied to the analysis of urine
    by Vrana et al. (1983), and the detection limit was 10 µg/litre.

         However, these methods do not allow the direct determination of
    platinum in complex solutions due to interferences from some heavy
    metals and precipitation of platinum with other metals in the form
    of their hydroxides. In this respect, inverse voltametry is
    superior. Kritsotakis & Tobschall (1985) used the glassy carbon
    electrode for the determination of platinum traces in synthetic
    solutions. After preconcentration, 0.04 mg Pt/litre could be
    determined. This detection limit is sufficient for determining
    platinum in ores.

         Using adsorptive cathodic stripping voltametry, Van den Berg &
    Jacinto (1988) analysed sea-water samples (see section 5.1.2). The
    detection limit was 7.8 pg Pt/litre. 

         Hoppstock et al. (1989) developed a sensitive volta-metric
    method for determining platinum in the ng/kg range in biotic and
    environmental materials. The overall recovery of platinum was
    reported to be 97% or more.

         Nygren et al. (1990) described an adsorptive volta-metric
    method for the measurement of platinum in blood. The detection limit
    for a 100-µl sample was 0.017 µg per litre.

    2.4.3.6  Proton-induced X-ray emission (PIXE)

         PIXE requires only small sample sizes (1-10 mg), but is a time-
    consuming and labour-intensive method. Owing to the substantially
    lower background, the detection limits are lower by a factor of 1000
    than for X-ray fluorescence methods. Methods for analysing water
    samples, air, and biological tissues have been described by Rickey
    et al. (1979), Wolfe (1979), and Thompson et al. (1981).

    2.4.3.7  Liquid chromatography (LC)

         Marsh et al. (1984) published an adsorption chromatography
    method in which the analyte was first separated with an ODS
    Hypersil(R) column, reacted with NaHSO3, and then detected by UV
    absorption. The detection limit for cisplatin was 40-60 µg/litre.
    For the malonate derivates, Van der Vijgh et al. (1984) reported a
    detection limit of 300-1200 µg/litre for human body fluids.

         Ebina et al. (1983) analysed Pt(II) in aqueous solutions that
    were modified with EDTA, ethanoic acid, and maleonitriledithiol. The
    spectrophotometric detection limit for this partition ion-pair
    method was 0.2 ng per litre.

         Using an ion exchange chromatography method, Rocklin (1984)
    separated Pt(IV) as the hexachlorocomplex on a polar anion exchange
    column and determined the complex by UV. For samples digested in
    aqua regia, a detection limit of 30 µg/litre can be obtained without
    preconcentration and < 1 µg/litre after preconcentration.

    2.4.3.8  Atomic absorption spectrometry (AAS)

         AAS is a method of high selectivity and specificity and is
    often the method of choice in analysing platinum in biological and
    environmental samples. However, there are problems with background
    radiation deriving from molecules and radicals, especially from
    unseparated matrix. These interferences can be partly overcome by
    background compensation through a radiation continuum or by the
    application of the "Zeeman" effect. To determine platinum in the
    range of the detection limit, an accurate separation from matrix is
    essential.

         For platinum determinations in biological materials, Farago &
    Parsons (1982) recommended wet digestion in nitric acid and the
    removal of residual nitrates by hydrochloric acid. Brown & Lee
    (1986) proposed totally pyrolytic cuvettes for graphite furnace AAS,
    thus achieving a greater sensitivity for refractory metals. These
    results were confirmed by Schlemmer & Welz (1986). Although platinum
    does not form a stable carbide, there was an effect on the wall
    material of the carbon rod. Electro-graphite tubes coated with
    pyrolytic graphite were found to be superior to glassy carbon tubes
    (Welz & Schlemmer, 1987).

         LeRoy et al. (1977) described a method for the detection of
    platinum in biological samples that used controlled dehydration and
    ashing with rapid sample evaporation to detect low levels of
    platinum. This method did not suffer as much from matrix
    interference as other AAS graphite furnace methods. The method can
    be used to detect platinum down to approximately 30 µg/kg (30 ppb). 

         Hodge et al. (1986) determined platinum down to pg per litre
    levels in marine waters, sediments, and organisms. Sea water was
    extracted with an anion exchanger (Table 4), eluted, and purified by
    acid digestion. In a second step, platinum was obtained from the
    solution with an anion exchanger, stripped again from the bead, and
    injected. Using a similar technique, Hodge & Stallard (1986)
    determined platinum in roadside dust.

         Jones (1976) digested urine and blood samples with nitric and
    perchloric acids. The samples were diluted after cooling and
    injected onto carbon rods. The minimum detectable platinum
    concentration in 5-g samples was 30 µg per litre.

         McGahan & Tyczkowska (1987) dried and ashed tissues and fluids
    and diluted the residue with different acids before direct
    injection. The detection limits were 6 µg per kg or 6 µg/litre.

         Bannister et al. (1978) separated protein-bound platinum and
    free circulating compounds by centrifugal ultra-filtration. In the
    ultrafiltrate, platinum compounds were chelated with
    ethylenediamine, extracted on a cation exchange paper disc, eluted,
    and injected. The minimum working concentration was 35 µg/litre of
    plasma.

         Alt et al. (1988) described a simple and reliable method which
    included high-pressure ashing (cf. Knapp, 1984), separation by
    extraction, and detection by graphite furnace AAS. This method was
    recommended for analysing biological and other materials down to the
    µg/kg range. 

         König et al. (1989) determined platinum in the particulate
    emissions in engine test-stand experiments (see section 3.2.1.4)
    using a high-pressure digestion without a separation. The authors
    studied the matrix influences with respect to the concomitant
    elements and found interferences from A1, Pb, Ca, Zn, P and, most
    severely, from Si, but under the controlled test conditions no
    interference effects were observed. In particle-free condensates of
    automotive exhaust gas, a detection limit of 0.1 ng/ml was achieved
    by the method of signal addition described by Berndt et al. (1987).

    2.4.3.9  Inductively coupled plasma (ICP)

         The generation of plasmas is a further development of chemical
    flame methods. They have a wide temperature range, a transparency
    for the UV spectral lines, and are predominantly insensitive against
    interfering chemical reactions in the excitation zone that occur
    with chemical flames. Plasma excitation allows the determination of
    several elements simultaneously and is, because of minor matrix
    effects, easy to calibrate over many orders of magnitude. Two
    methods of generating a plasma are currently used: firstly with

    direct current (DC) and secondly with a high frequency current
    (20-80 MHz, inductively coupled plasma, ICP). The ICP method works
    with an argon plasma and temperatures of 4000-8000 K. Due to the
    increasing ionization effects, the aerosol feeding is controlled by
    cooling devices.

         Boumans & Vrakking (1987) discussed standard values for a 50-
    MHz ICP, considering effects of source characteristics, noise, and
    spectral band-width, and obtained a detection limit for the platinum
    spectral line at 214.42 nm of 7.2 µg/litre.

         Maessen et al. (1986) studied the influence of chloroform on
    the platinum signal at 203.65 nm. The detection limits by this
    method were affected by chloroform and ranged from 30-400 µg/litre.

         Wemyss & Scott (1978) determined platinum-group metals and gold
    in ores after three different digestions. The method allowed
    determination down to 0.13 mg/litre for the 299.8-nm line.

         Fox (1984) reported interferences from aluminium and magnesium
    in direct current methods. A buffer of lithium and lanthanum
    compounds suppressed this effect.

         Lo et al. (1987) described a simple method for determining
    platinum in urine with a working range down to 50 µg/litre (50 ppb)
    under direct application of acidified samples. Electrothermal
    vaporization (ETV) was used for generating plasma-suitable aerosols
    by Matusiewicz & Barnes (1983). They determined platinum at the
    mg/litre level in human body fluids directly. A similar procedure
    was used by Belliveau et al. (1986).

    2.4.3.10  Inductively coupled plasma - mass spectrometry (ICP-MS)

         Combining ICP with a mass spectrometer has new advantages in
    analytical spectroscopy. Elemental ions generated from an aerosol or
    an electrothermal vaporization unit are separated by a quadrupole
    and detected as isotopes at low level. The ETV device allows
    determination down to the pg/ml range.

         Thompson & Houk (1986) used an ion-pair reversed-phase liquid
    chromatography assay via a continuous flow ultrasonic nebulizer and
    an ICP torch with a mass spectrometer. In synthetic solutions
    detection limits of 7 µg/litre (7 ppb) were obtained.

         Gregoire (1988) compared the results from the ICP-MS-ETV with
    neutron activation analysis and the ICP-MS solution nebulization
    method in the ng/ml concentration range and found good agreement.

         For the analysis of air samples, the NIOSH Manual of Analytical
    Methods (Eller, 1984a) describes a method based on inductively
    coupled argon plasma atomic emission spectroscopy. The working range

    is 0.005-2.0 mg/m3 with a 500-litre air sample. However, long
    sampling periods are required for measuring soluble platinum
    compounds in the workplace and the method does not distinguish
    between soluble and insoluble platinum. Similar methods are
    recommended for the analysis of platinum in blood and tissues
    (Eller, 1984b) and in urine (Eller, 1984c).

         The method recommended by the United Kingdom Health and Safety
    Executive (1985) has a precision better than 8%, measured as a
    coefficient of variation, for samples of a minimum of 120 litres in
    the range 1-15 µg Pt/m3. The sensitivity of this method can be
    improved by 100-1000 fold by using ICP-MS instead of carbon furnace
    atomic absorption spectrometry.

    3.  SOURCES OF HUMAN AND ENVIRONMENTAL EXPOSURE

    3.1  Natural occurrence

         The six platinum-group metals, platinum, palladium, rhodium,
    ruthenium, iridium, and osmium, were probably concentrated mainly in
    the iron-nickel core during the earth's formation. This explains
    their relatively low presence in the lithosphere (rocky crust) of
    the earth (Goldschmidt, 1954) where the average concentration of
    platinum ranges between 0.001 and 0.005 mg/kg (Mason, 1966, Bowen,
    1979).

         Platinum is found both in its metallic form and in a number of
    minerals. The principal minerals are: sperrylite, PtAs2;
    cooperite, (Pt,Pd)S; and braggite, (Pt,Pd,Ni)S. Primary deposits are
    associated with ultrabasic, rather than silicic, rock formations.
    Economically important sources exist in the Bushveld Igneous Rock
    Complex in Transvaal, Republic of South Africa, and in the Noril'sk
    region of Siberia, the Kola Peninsula, and in the Nishnij Tagil
    region of the Urals, USSR. The platinum content in these deposits is
    between 1 and 500 mg/kg. In the Sudbury district of Canada, platinum
    metal is contained in copper-nickel sulfide ores at an average
    concentration of 0.3 mg/kg but is concentrated to more than 50 mg/kg
    during the refining of copper and nickel. In the USA, there is a
    platinum-palladium mine in the Stillwater Complex area, Montana
    (NAS, 1977; Renner, 1979).

         Small amounts of platinum are also mined from secondary or
    placer deposits in the USSR (Ural Mountains), Colombia, USA
    (Alaska), Ethiopia, and the Philippines. In these deposits platinum
    is present in the form of metallic alloys of varied composition
    (NAS, 1977).

    3.2  Anthropogenic sources

    3.2.1  Production levels and processes

    3.2.1.1  World production figures

         World mine production of platinum-group metals, 40-50% of which
    is platinum, has steadily increased during the last two decades. In
    1971 production was 127 tonnes (51-64 tonnes platinum) and in 1972
    it was 132 tonnes (53-66 tonnes platinum) (Butterman, 1975). In
    1975, automobile exhaust gas catalysts were introduced in the USA in
    order to meet the stringent emission limits for carbon monoxide,
    hydrocarbons, and nitrogen oxides set by the Federal Clean Air Act.
    In Japan, the automobile catalyst was introduced at the same time.
    As a consequence, world production of PGM increased to 179 tonnes
    (72-90 tonnes platinum) in 1975, reaching a plateau of between 200
    and 203 tonnes per year (80-102 tonnes platinum) during the period
    1977-1983 (Loebenstein, 1982, 1988).

         From 1984 onwards world production increased, apparently in
    response to the anticipated demand in Western Europe where
    automobiles are being increasingly fitted with catalytic converters.
    In 1987, world mine production of PGM amounted to about 270 tonnes
    (108-135 tonnes platinum) (Loebenstein, 1988).

         The future demand for platinum depends on improvements in
    engine technology and emission control, but can be expected to
    increase further during the coming years. Data on platinum demand
    are presented in section 3.2.2.

    3.2.1.2  Manufacturing processes

         Most native placer platinum is recovered by dredging and, in
    less developed areas, by small hand operations. The copper and
    nickel sulfide ores are mined by large-scale underground methods and
    concentrated by flotation (Stokinger, 1981).

         The isolation of pure platinum metal from raw materials
    involves two principal stages: (i) extraction of a concentrate of
    precious metals from the ore; (ii) refining the concentrate to
    separate the platinum-group metals from each other and purify them.
    These processes require sophisticated chemical technology and
    include precipitating crystallization and liquid-liquid extraction,
    often combined with redox reactions to change the oxidation state of
    the metals. Further processes involve halogenation and reduction
    reactions at annealing temperatures and special distillations
    (Renner, 1984).

         Potential health hazards of exposure to soluble platinum salts
    are encountered during the later stages of the refining process.
    After dissolving platinum, palladium, and gold with aqua regia or
    Cl2/HCl and the subsequent precipitation of gold by addition of
    ferrous salts, ammonium chloride is added to precipitate ammonium
    hexachloroplatinate, (NH4)2[PtCl6]. After several purification
    processes there is a second precipitation of this complex salt,
    which is then filtered off, dried and finally calcined to yield a
    spongy mass of platinum metal having purity of 99.95-99.99%. This
    can be further purified by a cationic exchange technique (NAS, 1977;
    Stokinger, 1981).

         Secondary sources in substantial quantities come from the
    reclamation of scrap and used equipment, particularly industrial
    catalysts. The recycling of platinum-group metals from automobile
    catalysts is also increasing (see section 4.3). In principle, the
    recycling of platinum involves the same wet-chemical and melting
    processes that are applied to its production from ores (Renner,
    1984). 

    3.2.1.3  Emissions from stationary sources

    a)  Production

         Data on emissions of platinum during production are not
    available.

    b)  Stationary catalysts

         During the use of platinum-containing catalysts, platinum can
    escape into the environment in variable amounts, depending on the
    type of catalyst. Of the stationary catalysts used in industry, only
    those employed for ammonia oxidation emit major amounts.

         The loss of platinum from ammonia oxidation gauzes during
    nitric acid production depends on the operating pressure. An average
    figure is 0.15 g/tonne of nitric acid (Sperner & Hohmann, 1976). Of
    this apparent loss, 70-85% is recovered on gold-palladium catchment
    gauzes, reducing the loss to 0.03 g/tonne (Anon., 1990a). The
    production of nitric acid in the USA in 1989 was 7 247 837 tonnes
    (Anon., 1990b). Thus the amount of platinum "lost" in 1989 in the
    USA is calcu-lated to be 217 kg. This is the maximum amount that
    could be dissolved or suspended as a colloid in the nitric acid and,
    thus, could be introduced into the environment if the nitric acid is
    used in fertilizer production.

    3.2.1.4  Emissions from automobile catalysts

         Automobile catalysts are mobile sources of platinum. Although
    these catalysts are designed to function for 80 000 km or more
    (Koberstein, 1984), some loss of platinum can occur due to
    mechanical and thermal impact. The data on platinum emissions from
    automobile catalysts are very limited.

         In the mid 1970s unrealistically high assumptions were made for
    platinum loss. Brubaker et al. (1975) estimated the loss to be about
    12 µg Pt/km, which would mean a total loss of approximately 1 g
    after 80 000 km.

         Experimental data show much lower emission rates. Malanchuk et
    al. (1974) found a platinum concentration of 0.029 µg/m3 in an
    inhalation chamber that was fed by catalysed engine exhaust. On the
    basis of the chamber volume, flow rate, and the speed simulated on
    the engine test stand, an emission rate of 0.39 µg/km was
    calculated. In another US EPA study, Sigsby (1976) did not detect
    platinum in particulate exhaust emissions (< 5 µm) at a detection
    limit of 0.06 µg/g. In exhaust dilution tunnels, platinum was
    detected in larger particles in the range of 0.034 to 635 µg/g
    sample; whole or fragmented pellets contained the highest
    concentrations.

         Reliable emission data for the pellet-type catalyst come from a
    study conducted by the General Motors Corporation (Hill & Mayer,
    1977), in which emission rates as well as the soluble fraction were
    determined by a radio-metric method. Platinum emission was found to
    be 0.8 to 1.2 µg per km travelled in low-speed runs (starts and
    stops, maximum speed 48 km/h) and 1.9 µg per kilometre travelled in
    high-speed runs (96 km/h). It should be noted that these results
    relate to the first 250 km of catalyst life. Lower loss rates would
    be expected with increasing age of the catalyst. Of the particles
    collected, 80% had particle diameters greater than 125 µm.
    Experiments with an engine test stand using laboratory prepared
    catalysts indicated that about 10% of the platinum emitted is water
    soluble. However, the statistical significance of these results was
    not reported. Even so, these emission data provide the best basis
    for the estimation of expected ambient air concentrations resulting
    from the introduction of pellet catalysts (see section 5.1.1).
    However, this type of automobile catalyst is no longer used on new
    cars in the USA, and has never been used in Europe where only
    monolithic catalysts are on the market.

         Emission data are available concerning the new generation
    monolith-type catalyst. In Germany the Fraunhofer Institute of
    Toxicology and Aerosol Research (König et al., 1989, König & Hertel,
    1990) has conducted engine test stand experiments as part of a
    programme of the Ministry of Research and Technology for assessing
    the relative risk of this new man-made environmental source (GSF,
    1990). First results indicated that platinum emission is lower by a
    factor of 100 than in the case of pelleted catalysts: at a simulated
    speed of 100 km/h, total loss from a three-way catalyst was
    measured, using the AAS method, to be on average about 17 ng/m3 in
    the exhaust gas (König et al., 1989). In further experiments this
    value was validated (König & Hertel, 1990): the mean platinum
    emission from two catalysts was found to be 12 and 8 ng/m3,
    respectively. As shown in Table 5, platinum emission seems to be
    temperature dependent. At an exhaust gas temperature of 690° C and a
    simulated speed of 140 km/h, about 35-39 ng/m3 was found in the
    exhaust gas. The mean aerodynamic diameter of the particles
    collected after the muffler (silencer) on a Berner impactor varied
    between 4 and 9 µm. Preliminary results indicated that approximately
    10% of the total platinum penetrated a depth-type filter to be
    trapped in the condensate (König et al., 1989), but this single
    measurement could not be confirmed by subsequent determinations
    where the platinum content in the condensate was below the detection
    limit (0.1 ng/ml) (König & Hertel, 1990).

         Schlögl et al. (1987) analysed microparticles emitted from
    automobile exhaust and collected on several conducting surfaces. In
    experiments with diesel and gasoline engines equipped with
    catalysts, they found detectable traces of platinum. In diesel
    engine exhaust it was presumed that most platinum would be in the
    oxidation state 0 (platinum black). A small part was found to be

    Pt(IV), probably in the oxide form. The platinum emission from
    gasoline engines showed a photoemission spectrum indicating that
    platinum is probably emitted mostly in the form of surface oxidized
    particles.
        Table 5.  Mean platinum emissions from two monolith catalysts (1 and 2)
              at different engine test stand runsa
                                                                                          
                                                Platinum emission
                                                                                          

    Simulated    Number       Exhaust gas     Exhaust      ng per km      Mean aerodynamic
    speed        of samples   temperature     gas          travelledb     diameter (µm)
    (km/h)                    (° C)           (ng/m3)
                                              (1)   (2)    (1)   (2)         (1)    (2)

       60           18            480           3     4      2     3          6      9
      100           39            600          12     8     10     8          4      6
      140           18            690          39    35     39    35          6      8
                                                                                          

    a Adapted from König et al. (in press)
    b Calculated assuming that on average 10 m3 exhaust gas is emitted per litre
      gasoline and a gasoline kilometrage of 7, 8, and 10 litres per 100 km travelled,
      respectively.
        3.2.2  Uses

         The principal use of platinum derives from its special
    catalytic properties. Further applications in industry are related
    to other outstanding properties, particularly resistance to chemical
    corrosion over a wide temperature range, high melting point, high
    mechanical strength, and good ductility. Platinum has long been
    known to have excellent catalytic properties. Before the
    introduction of catalytic converters in automobiles, most of the
    platinum was used as a catalyst in hydrogenation, dehydrogenation,
    isomerization, cyclization, dehydration, dehalogenation, and
    oxidation reactions. One of its major industrial uses is for
    naphtha-reforming to upgrade catalytically the octane rating of
    gasoline. Other catalytic uses are in ammonia oxidation to produce
    nitric acid, hydrogen cyanide manufacture, the reduction of nitro
    groups and, in the automobile catalyst application, the conversion
    of carbon monoxide to carbon dioxide and nitrogen oxide to nitrogen
    and water (NAS, 1977; Stokinger, 1981).

         As shown in Table 6, in the USA in 1973, before the
    introduction of the automobile catalyst, most of the platinum was
    used for catalytic purposes in the chemical and petroleum industry.
    In 1987 the use pattern had completely changed and 71% of the
    platinum sold was used by the automobile industry. In 1987, a
    typical USA car catalyst contained about 1.77 g of platinum and 10.6

    million vehicles with catalysts were produced (Loebenstein, 1988);
    this accounts for the 18.8 tonnes shown in Table 6.

    Table 6.  Platinum sales to various types of industry in the USA
              before and after the introduction of automotive catalytic
              convertersa
                                                                      

    Industry                   1973                       1987
                        kg/year   % of total       kg/year   % of total
                                                                      

    Automobile               -           -          18 817      71.3

    Chemical              7434        36.3            1920       7.5

    Petroleum             3844        18.8             739       2.8

    Dental and
    medical                868         4.2             479       1.9

    Electrical            3642        17.9            1821       7.1

    Glass                 2255        11.0             285       1.1

    Jewellery and
    decorative             697         3.4             177       0.7

    Miscellaneous         1732         8.5            1430       5.6

    Total               20 472         100          25 668       100
                                                                      

    a From: Butterman (1975); Loebenstein (1988)

         Tables 7 and 8 show the platinum demand by application in the
    Western world, also reflecting the increased demand during recent
    years. In 1989, total demand was 90 tonnes. 

         Platinum oxidation catalyst technology, developed to reduce
    automobile exhaust emissions, has been extended to other
    environmental control applications such as the reduction of carbon
    monoxide and hydrocarbon emissions from large gas turbines (Jung &
    Becker, 1987) and the transformation of hydrogen molecules into
    active hydrogen atoms to reduce chlorohydrocarbons such as
    trichloroethylene to ethane in water (Wang & Tan, 1987).


    
    Table 7.  Western-world platinum demand (kg/year) by applicationa
                                                                                                                                    
                             1980       1981       1982       1983       1984       1985       1986       1987       1988       1989
                                                                                                                                    

    Automobile catalyst
      gross                19 278     18 144     18 569     18 285     23 814     27 783     32 318     35 579     37 563     41 107
      recovery                  0          0        283        850       1276       1984       2551       3260       4536       4961
    Chemical                 7371       7087       7371       6946       7371       6379       5528       5528       4536       4536
    Electrical               5953       5245       4819       4961       5386       5670       5103       5103       5245       5528
    Glass                    3969       2835       2410       2977       3969       3969       2551       3402       3685       3969
    Investment
      small                     0          0       1276       2551       4819       7371     12 757       6095       9355       3685
      large                  4536       5528       3260       1843       4252       4819       3544       7796       8505        850
    Jewellery              15 876     21 404     21 687     20 270     21 971     22 963     24 097     28 066     33 452     36 996
    Petroleum                3685       3969       1843        567        425        425        567       1559       1417       2126
    Other                    5386       4678       4819       4252       3827       2835       3685       3402       3402       3260

    Total                  66 054     68 889     65 771     61 802     74 559     80 230     80 511     93 270    102 624     97 096
                                                                                                                                    

    a From Johnson Matthey (1990)

    Table 8.  Regional platinum demand (kg/year) by applicationa
                                                                                                                                    

                             1980       1981       1982       1983       1984       1985       1986       1987       1988       1989
                                                                                                                                    

    Japan

    Automobile catalyst
      grossb                 5953       5386       4819       4819       4819       5953       7229       8788       9355     10 064
      recoveryc                 0          0          0          0          0          0        142        425        709        709
    Chemical                  283        283        283        283        425        425        425        425        425        425
    Electrical                425        425        567        567         50       1134       1276       1276       1276       1417
    Glass                    1134       1417       1276       1701       2126       1701        850       1276       1276       1134
    Investment
      small                     0          0          0        142        425        992        992       1701       3260        992
      large                  4536       5528       3260       1843       4252       4819       3544       7796       8505        850
    Jewellery              12 474     17 718     17 577     15 876     17 718     19 136     20 979     25 515     30 050     32 602
    Petroleum                 425        425        425        425        567        425          0          0          0          0
    Other                    1417       1417       1559       1276       1134        850        567        425        425        425

    Total                  26 647     32 599     29 766     26 932     32 316     35 435     28 632     46 777     53 863     47 200
                                                                                                                                    

    North America

    Automobile catalyst
      gross                12 474     12 190     12 899     12 757     18 002     19 845     21 120     19 561     19 561     20 412
      recovery                  0          0          0        850       1276       1984       2410       2835       3827       4252
    Chemical                 3260       1417       2268       2835       2835       2126       1843       1559       1559       1559
    Electrical               4111       1984       1984       2551       2693       2268       1843       1843       1843       2126
    Glass                    1417        567        283        425        850       1134        709        709        709        850
    Investment                  0          0       1134       1134        850       3685       8505       2410       2410       1559
    Jewellery                 425        425        425        425        425        425        425        425        425        567
    Petroleum                3969       1559        567        425        425        283        283        425        425       1134
    Other                    2126       1701        567        709        992        850       1417       1417       1417       1417

    Total                  27 782     19 843     20 127     20 411     25 796     28 632     33 735     25 514     24 522     25 372
                                                                                                                                    

    Table 8 (contd).
                                                                                                                                    

                             1980       1981       1982       1983       1984       1985       1986       1987       1988       1989
                                                                                                                                    

    Rest of Western world, including Europe

    Automobile catalyst
      gross                   850        567        567        709        992       1984       3969       7229       8647     10 631
      recovery                  0          0          0          0          0          0          0          0          0          0
    Chemical                 3827       5386       4819       3827       4111       3827       3260       3544       2551       2551
    Electrical               1417       2835       2268       1843       1843       2268       1984       1984       1984       1984
    Glass                    1417        850        850        850        992       1134        992       1417       1701       1984
    Investment                  0          0        142       1276       3544       2693       3260       1984       3685       1134
    Jewellery                2977       3260       3685       3969       3827       3402       2693       2126       2977       3827
    Petroleum                 709       1984        850        283        567        283        283       1134        992        992
    Other                    1843       1559       2693       2268       1701       1134       1701       1559       1559       1417

    Total                  11 622     16 441     15 874     14 459     16 443     16 159     18 142     20 977     24 096     24 520
                                                                                                                                    

    a From: Johnson Matthey (1990)
    b Gross automobile catalyst demand is purchase of platinum by the auto industry for the manufacture of automobile catalysts.
    c Automobile catalyst recovery is platinum recovered from catalytic converters removed from scrapped automobiles.


    
         Platinum and platinum-rhodium alloys have many high-temperature
    uses. Thermo-electrical applications arise from the simple and
    stable relationship between resistance and temperature that platinum
    exhibits over a wide temperature range. This explains its use in
    platinum resistance thermometers, thermocouples, and strain gauges.
    The high melting point of platinum and its resistance to oxidation
    and many chemicals has led to its use in vessels in the glass-making
    industry and in the fabrication of spinning jets and bushings for
    the production of viscose rayon and fibreglass, respectively. It is
    also used for laboratory ware, such as crucibles, combustion boats,
    and the tips of tongs. Ships' hulls, propellers, and rudders are
    protected against corrosion by "cathodic protection" using platinum-
    clad anodes (NAS, 1977).

         Platinum and/or its alloys have been used in electric contacts
    for relays and switchgears for a variety of reasons, including
    hardness and good conductivity. Many printed circuits are made using
    preparations that contain platinum. Electrochemical platinum
    electrodes have been used in preparative chemistry, since they
    support many oxidative reactions although they resist oxidation
    themselves (NAS, 1977).

         A major use of platinum is in jewellery for making rings and
    settings. Platinum is also used to produce a silvery lustre on
    ceramic glazes (NAS, 1977).

         In dentistry, platinum is used in gold-platinum-palladium
    alloys to raise the melting-point range and increase the strength.
    However, this use is decreasing, since platinum is being replaced by
    other materials including palladium (Anusavice, 1985; NAS, 1977).

         Platinum has an important role in neurological prostheses, i.e.
    surgically implanted microelectronic devices, such as implants for
    treating incontinence, or for recovering some use of paralysed limbs
    following spinal accidents (Donaldson, 1987).

         Platinum-iridium electrodes are used for long-term electrode
    implantation for recording electrical activity and for stimulation
    in human tissues and organs, e.g., pacemakers (Theopold et al.,
    1981).

         All these applications use platinum as a pure metal or in the
    form of alloys, but soluble platinum salts are also used in the
    manufacture of these products; e.g., hexachloroplatinic acid may be
    used in platinizing alumina or charcoal in catalyst production. A
    number of salts can be used in the electrodeposition of platinum,
    e.g., sodium hexahydroxyplatinate(IV), Na2[Pt(OH)6].2H2O,
    diamminedinitroplatinum(II), [Pt(NO2)2(NH3)2], hydrogen
    dinitrosulfatoplatinate(II), H2[Pt(NO2)2SO4], and

    tetraammineplatinum(II) compounds such as the hydrogenphosphate,
    sulfamate, citrate, and tartrate (Baumgärtner & Raub, 1988; Skinner,
    1989).

         Complexes of platinum, particularly  cis-
    diamminedichloroplatinum(II) (cisplatin) (see footnote in section
    1.2), have been used to treat cancer. In patients with testicular
    cancers, remissions rates of more than 90% have been achieved
    (Lippert & Beck, 1983).

    4.  ENVIRONMENTAL TRANSPORT, DISTRIBUTION, AND TRANSFORMATION

    4.1  Transport and distribution between media

         By comparison with other elements, platinum-group metals are
    distributed sparsely in the environment. Since platinum is so
    valuable, great care is taken to avoid significant loss during
    mining and refining processes, and during use and disposal of used
    platinum-containing objects. Up to 1984, about 1050 tonnes of
    platinum had been refined. Most of this has been used in the form of
    the metal and platinum oxides, which are practically insoluble in
    water, resistant to most chemical reactions in the biosphere, and do
    not volatilize into air (Renner, 1984).

         Part of the platinum released into the air from automobile
    emissions (section 5) is deposited close to the roads and could be
    washed off by rain into rivers and coastal marine waters (Hodge &
    Stallard, 1986). However, only small amounts of platinum have been
    detected in environmental samples (see sections 5.1.2. and 5.1.3.). 

         Large amounts of metals including platinum can be transported
    in rivers draining major industrialized regions, leading to elevated
    platinum concentrations in sediments (section 5.1.3).

         Platinum forms soluble complexes with ammonia, cyanide, amines,
    olefins, organic sulfides, and tertiary arsines. However, the level
    of these ligands in natural waters is insufficient to make platinum
    mobile (Fuchs & Rose, 1974).

         Organic matter has a role as a vehicle for the transport of
    platinum and for bringing about its precipitation or concentration.
    There is a good correlation between high contents of platinum and
    organic carbon in polluted stream sediments of the Ginsheimer-
    Altrhine river, near Mainz, Germany (see section 5.1.2), and it is
    assumed that organic matter such as humic and fulvic acids binds
    platinum, aided perhaps by appropriate pH and redox potential
    conditions in the aquatic environment (Dissanayake, 1983).

         Detailed information about the geochemical behaviour of
    platinum-group metals is available from the platinum mining area of
    Stillwater, Montana, USA (Fuchs & Rose, 1974). The mobility of
    platinum depends on pH, the redox potential, chloride concentrations
    in soil water, and the mode of occurrence of platinum in the primary
    rock. The relation between redox potentials and pH conditions
    indicates that platinum behaviour also depends on the kind of ore it
    is associated with. If bound in chromite, it has essentially no
    mobility in weathering because of the resistant character of
    chromite. On the other hand, platinum in the form of trace mineral
    inclusions in sulfides is readily released by oxidation during
    weathering. Calculated relations between pH and redox potential
    indicate that increased chloride concentrations in soil water will

    promote mobility. Thus, platinum will be mobile only in extremely
    acid waters or those with a high chloride level (Fuchs & Rose,
    1974).

         In twigs from four limber pines  (Pinus flexilis) in the
    platinum mining area of Stillwater, the platinum concentrations were
    the same as in the adjacent soil. It was concluded that limber pine
    does not concentrate platinum, probably due to the limited mobility
    of platinum (Fuchs & Rose, 1974). However, high concentrations of
    platinum were found in the roots of nine horticultural crops
    (cauliflower, radish, snapbean, sweet corn, pea, tomato, bell
    pepper, broccoli, and turnip) grown in Hoagland's hydroponic culture
    solution containing platinum tetrachloride concentrations of 0.057,
    0.57, or 5.7 mg/litre (Pallas & Jones, 1978; see section 7.3). For
    example, at the highest concentration, cauliflower and tomato roots
    contained 1425 and 1710 mg Pt/kg, respectively. Only pepper,
    cauliflower, and radish accumulated platinum in their tops, but to a
    very limited extent. From the data of Pallas & Jones (1978) it is
    not clear whether they differentiated between contamination of the
    root surface and true uptake of platinum. However, these results
    indicate that platinum can enter food crops but the bioavailability
    essentially depends on the solubility of the platinum species. It
    should be noted that the salt (PtCl4) used by Pallas & Jones
    (1978) is soluble in water.

         In the context of a German government programme (see section
    3.2.1.4), Rosner et al. (1991) conducted engine test stand
    experiments with a three-way-catalyst-equipped engine (monolith-type
    catalyst) to determine platinum uptake by plants. Grass cultures
     (Lolium multiflorum) were placed in continuously stirred tank
    reactors and exposed to slightly diluted (1:10/20) exhaust gas for 4
    weeks (8 h/day, 5 days/week). Using atomic absorption spectrometry
    for the measurement of platinum emissions (see section 2.4.3.8,
    König & Hertel, 1990), no platinum could be detected in the shoots
    at a detection limit of 2 ng/g dry weight.

    4.2  Biotransformation

         By analogy, platinum compounds may undergo biotransformation
    comparable to processes described for other metals. The
    biomethylation of platinum compounds, i.e. [Pt(IV)Cl6]2-,
    [Pt(IV)(CN)4Cl2]2-, [Pt(IV)(CN)5Cl]2-, and
    [Pt(IV)(SO4)2], has been established only in  in vitro test
    systems (Taylor, 1976; Wood et al., 1978; Fanchiang et al., 1979;
    Taylor et al., 1979; Fanchiang, 1985).

         Methylcobalamin (MeB12) reacts with Pt(II) and Pt(IV)
    complexes to give a methylated platinum compound. Agnes et al.
    (1971) reported that this reaction requires the presence of platinum
    in both oxidation states. Spectrophotometric measurements showed the
    consumption of one mole of [Pt(IV)Cl6]2- per mole of MeB12,

    [Pt(II)Cl4]2- being required only in catalytic quantities.
    Aquocobalamin (aquo-B12) and methylplatinum were shown to be the
    products of the reaction (Taylor & Hanna, 1977).

         From these laboratory data produced under abiotic conditions it
    is not, however, possible to conclude that microorganisms in the
    environment are able to biomethylate platinum complexes.

    4.3  Ultimate fate following use

         The value of platinum-group metals has greatly increased and
    methods for their recovery from spent catalysts are of economic
    importance.

         Platinum metal has been successfully recycled from used
    chemical and petroleum catalysts for many years, but many companies
    are still trying to find a successful formula for retrieving it from
    automobile catalysts. The latter accounts for more than 30% of the
    total platinum-group metal consumption in the USA. The US Office of
    Technology calculated that if 50-60% of catalytic converters were
    recovered for their metal value, about 7717 kg platinum per year
    could be reclaimed in 1990. However, currently only between 25 to
    40% of the used converters are being reclaimed (Agoos, 1986).
    According to another estimate, 5443 kg of platinum was recovered in
    1989 from automobile catalysts, of which 4666 kg was recovered in
    the USA (Johnson Matthey, 1990).

         In contrast to automobile catalysts, almost 100% of spent
    reforming and gauze catalysts are collected for their metal value.
    This is based on their much higher platinum metal content (Agoos,
    1986).

    5.  ENVIRONMENTAL LEVELS AND HUMAN EXPOSURE

    5.1  Environmental levels

    5.1.1  Ambient air

         Few measurements of platinum ambient air concentrations have
    been reported. Results obtained before the introduction of cars with
    catalytic converters can serve as a baseline. Air samples taken near
    freeways in California, USA, and analysed using atomic absorption
    spectrometry were below the detection limit of 0.05 pg/m3 (Johnson
    et al., 1975; 1976).

         No platinum could be detected in two air samples collected by
    Ito & Kidani (1982) in an industrial area of Nagoya, Japan, in 1981.

         Close to city roads in Frankfurt, Langenbrügge, Germany, the
    platinum air concentrations (particulate samples) were measured in
    1989 to be between < 1 and 13 pg/m3. In rural areas the
    concentrations were < 0.6-1.8 pg/m3 (Tölg & Alt, 1990). At the
    time of these measurements, few German cars were equipped with
    catalysts. Thus, these levels virtually reflect background levels.

         Rosner & Hertel (1986) estimated ambient air concentrations for
    different scenarios, based on dispersion models used by US EPA
    (Ingalls & Garbe, 1982) and on the emission data of Hill & Mayer
    (1977) (see section 3.2.1.4). As shown in Table 9, total platinum
    concentrations near and on roads could range from 0.005 to 9
    ng/m3. Estimates for parking and personal garages were also made,
    based on an assumed emission rate of 1 µg/min for total platinum,
    but this is definitely an overestimate. It can be assumed that the
    emission of platinum depends on the exhaust gas temperature. At
    idling or very low speed conditions, emissions are expected to be
    negligible (see section 3.2.1.4).

         As described in section 3.2.1.4, emission data indicate that
    the total platinum emission of a monolith-type catalyst is probably
    lower by a factor of 100 than that of a pellet-type catalyst.
    Assuming an average emission rate of approximately 20 ng/km (see
    section 3.2.1.4) and applying the same dispersion models, the
    theoretical ambient air concentrations would be lowered to the
    picogram to femtogram per m3 range (see Table 9).

    Table 9.  Estimated ambient air concentrations of total platinum
              at various exposure conditions, based on an emission rate
              of 2 µg/km from the pelleted catalyst and 0.02 µg/km
              from the monolithic three-way catalyst
                                                                      

          Exposure situationa           Ambient Pt concentration(ng/m3)
                                            Pelleted     Monolithic
                                            catalyst     catalyst
                                                                      

    Roadway tunnel
      Typical                                 4            0.04
      Severe                                  9            0.09

    Street canyon (sidewalk receptor)
      Typical a)  800 vehicles per h          0.1          0.001
      Typical b) 1600 vehicles per h          0.3          0.003
      Severe a) 1200 vehicles per h           0.5          0.005
      Severe b) 2400 vehicles per h           0.9          0.009

    On expressway
      Typical                                 0.7          0.007
      Severe                                  1.6          0.016

    Beside expressway (short-term)
      Severe 1 m                              1.3          0.013
            10 m                              1.1          0.011
           100 m                              0.3          0.003
          1000 m                              0.04         0.0004

    Beside expressway (annual)
      Severe 1 m                              0.2          0.002
            10 m                              0.15         0.0015
           100 m                              0.04         0.0004
          1000 m                              0.005        0.00005
                                                                      

    a Calculations based on dispersion models used by US EPA;
      "Typical/severe" depends on wind conditions and road width
      (Ingalls & Garbe, 1982)

         Hodge & Stallard (1986) analysed roadside dust deposited in San
    Diego, California, USA. At the edge of a major freeway (154 000
    vehicles/day), dust samples contained the highest concentration (680
    µg Pt/kg dry weight; 680 ppb). At a distance of about 34 m, the
    platinum content of 100 µg/kg was about 7 times lower. At the edge
    of another heavily used freeway (96 000 vehicles/day) platinum
    content was 250 µg/kg, while with less heavy traffic (14 000
    vehicles/day) 260 and 300 µg/kg were found in two dust samples. The
    lowest concentrations, 37 and 60 µg/kg, were found in samples
    collected from plants growing in the yards of houses located on

    highly used road. The platinum concentration was not correlated with
    the lead concentration. However, the samples with the highest
    platinum concentrations also had the highest lead values. Although
    the number of samples was limited, the results indicate that
    automobile catalysts release platinum. However, it should be noted
    that platinum emissions from pelleted catalysts were probably
    responsible for the concentrations reported and that the use of
    monolith catalysts should result in much lower platinum
    concentrations in the roadside environment.

    5.1.2  Water and sediments

         In a study to determine baseline levels of platinum, Johnson et
    al. (1976) analysed tap water samples collected in Lancaster and Los
    Angeles, California, USA. No platinum was found at a detection limit
    of 0.08 µg/litre. In tap water (probably only one sample) from
    Liverpool, United Kingdom, a platinum content of 0.06 µg/litre was
    determined by adsorptive cathodic stripping voltametry (Van den Berg
    & Jacinto, 1988).

         Investigations of platinum concentrations in Lake Michigan
    sediments led to the conclusion that platinum has been deposited
    over the past 50 years at a constant rate. Concentrations at
    sediment depths of 1-20 cm varied between 0.3 and 0.43 µg/kg dry
    weight (Goldberg et al., 1981). In comparison, lead concentrations
    have markedly increased in the sediment due to increased emissions
    from industry and motor traffic.

         Lee (1983) noted a rapid increase in the palladium contents of
    the sediments from the Palace Moat, Tokyo, Japan, between 1948 and
    1973 and attributed it to the introduction of car catalysts.
    However, this is not conclusive as the palladium content in the
    sediment had already begun to increase in 1964-1965, before the
    introduction of the catalytic converter, and even in 1973 only a few
    cars were equipped with converters.

         Dissanayake et al. (1984) determined platinum concentrations in
    the sediments of a cut-off channel of the Rhine river near Mainz,
    Germany. Sediment samples from this highly polluted river were
    sieved and the < 2 µm fraction was analysed by flameless AAS. The
    platinum concentrations in 12 samples collected at different sites
    varied over a wide range. In four samples no platinum was detected,
    while eight samples contained between 730 and 31 220 µg/kg (dry
    weight). This is higher by a factor of up to 15 000 compared to
    unpolluted average North Sea sediments. The high variation was
    attributed to differences in pH and redox conditions. The extremely
    high concentrations appeared at the interface between an extremely
    reducing and an oxidizing aquatic environment that provided,
    together with a pH of 6.6-7.8, optimum conditions for the formation
    of metal-organic complexes. The sample containing 31 220 µg Pt/kg
    also contained the highest concentration of palladium (4000 µg/kg).

    The gold content (100-400 µg/kg) had a relatively uniform
    distribution, but was also indicative of a high state of pollution.

         Using a more sensitive graphite furnace AAS method, Goldberg et
    al. (1986) detected very low platinum concentrations in sea water.
    Samples of filtered water (0.45-µm filter) from the open Eastern
    Pacific Ocean showed an increase in platinum concentration with
    depth from surface values of around 100 to a value of 250 pg/litre
    at 4500 m. Similar concentration profiles were obtained in
    unfiltered sea water taken from the California Borderline region
    (Hodge et al., 1985). Sea-water samples analysed by Van den Berg &
    Jacinto (1988) were also within this concentration range. A deep-sea
    and a shallow-water sample from the Indian Ocean contained 154 and
    37 pg/litre, respectively, whereas sea water of coastal origin
    contained 332 pg/litre. It should be noted that these were only
    single samples.

         In sediment cores from the Eastern Pacific taken to a depth of
    6-22 cm in carbonate and siliceous ooze, platinum concentrations
    varied between 1.1 and 3 µg/kg (dry weight basis). Lower
    concentrations (0.3 µg/kg) were reported in the Santa Barbara Basin
    (Hodge et al., 1985). The highest concentration (21.9 µg/kg) was
    found in pelagic ocean sediments (Hodge et al., 1986).

         In several investigations, the platinum content of seamount
    ferromanganese nodules or crusts was studied. In deep-sea nodules
    from the Northwest Pacific nodule belt, platinum concentrations from
    < 5 to 145 µg/kg were found (Agiorgitis & Gundlach, 1978).

         Platinum values in ferromanganese seamount crusts from the
    Central Pacific were much higher and varied between 140 µg/kg at
    3780 m and a maximum of 880 µg/kg at a depth of 1120 m (Halbach et
    al., 1984). Both platinum and nickel concentrations correlated
    positively with manganese content and led to the conclusion that
    platinum and nickel are incorporated in the manganese oxide
    fraction. It was suggested that the high platinum concentration in
    the crusts is derived directly from sea water by a process of
    specific adsorption onto colloidal particles of hydrous manganese
    oxide, which has a negative surface charge in sea water.

         In a further investigation, platinum concentrations in
    ferromanganese minerals from various localities were found to vary
    between 6 and 940 µg/kg (Goldberg et al., 1986). In manganese
    nodules obtained at depths of between 1700 and 4200 m in the Pacific
    Ocean, platinum concentrations varied between 138 and 940 µg/kg
    (Hodge et al., 1986). 

    5.1.3  Soil

         Few measurements of platinum in soil have been reported. In the
    baseline study of Johnson et al. (1976), all surface soil samples

    collected near freeways in California, USA, and in a mining area in
    Sudbury, Canada, were below the detection limit of 0.8 µg/kg.

         In the USA, the National Academy of Sciences (NAS, 1977)
    estimated the accumulation of platinum in roadside environments on
    the basis of an emission rate of 1.9 µg per km from cars equipped
    with catalytic converters and a frequency of 5000 cars per day.
    Assuming that all emitted platinum was localized near the freeway in
    the topsoil (uniformly distributed about 30 cm deep over a width of
    about 90 m and a length of 1.6 km, with a soil density of 1.5
    g/cm3), a platinum concentration after 10 years of 8 µg/kg could
    be expected.

    5.1.4  Food

         Hamilton & Minski (1972/1973) estimated a total daily platinum
    intake of less than 1 µg/day, based on an analysis of a United
    Kingdom total-diet sample and 1963 United Kingdom consumption and
    population figures. No data were given on the platinum content of
    the foods analysed. 

    5.1.5  Terrestrial and aquatic organisms

         Fuchs & Rose (1974) analysed samples of twigs from four limber
    pines  (Pinus flexilis) in the Stillwater mining area, Montana,
    USA. Three samples contained between 12 and 56 µg Pt/kg (ash
    weight), while one contained platinum at a level below the detection
    limit. The content of the adjacent soils was also in this range, so
    that no evidence for accumulation could be derived from these
    limited data (see also section 4.1).

         Using neutron activation analysis (section 2.4.3.2) Valente et
    al. (1982) measured the following platinum concentrations in
    isolated samples of plants from an ultrabasic soil:  Fragaria
     virginiana, 830 µg/kg (dry weight);  Prunella vulgaris, 440
    µg/kg;  Aspidotis densa, 100 µg/kg. 

         In marine macroalgae the following platinum concentrations (on
    a dry weight basis) were found near La Jolla, California, USA (Hodge
    et al., 1986): red algae  Prionites australis and  Opuntiella
     californica, 0.19 and 0.08 µg/kg, respectively; brown algae
     Macrocystis pyrifera and  Pterygophora californica, 0.22 and 0.32
    µg/kg, respectively.

    5.2  General population exposure

         Two studies were conducted in the USA to establish baseline
    levels of platinum in the tissues and body fluids of the general
    population prior to the introduction of automobile catalysts.

         Johnson et al. (1975, 1976) analysed autopsy tissue samples
    from 10 people, 12 to 75 years old, who died from a variety of
    causes in Southern California. All samples taken from liver, kidney,
    spleen, lung, muscle, and fat were below the detection limits
    (0.2-2.6 µg/kg wet weight). Samples collected from 282 people from
    Southern California living near a heavily used urban freeway (Los
    Angeles) or in a desert area near Lancaster also showed platinum
    concentrations below the detection limits (blood, < 31 µg/litre;
    urine, < 0.6 µg/litre; hair, < 50 µg per kg; faeces, < 2 µg/kg).
    Only in pooled blood samples were detectable concentrations
    measured, i.e. 0.49 µg/litre in the Los Angeles group and 1.8
    µg/litre in the Lancaster group.

         In a second study, tissue samples were taken from autopsied
    individuals from Southern California (95 people) and New York (2
    people), who had not been knowingly exposed to platinum either
    occupationally or by medical treatment (Duffield et al., 1976). In
    42 individuals no platinum was detected. Of the 1313 samples
    collected, only 62, i.e. 5%, had detectable concentrations of
    platinum ranging from 0.003 to 1.46 mg/kg wet weight (mean 0.16
    mg/kg, median 0.067 mg/kg). Table 10 shows the frequency of platinum
    detection in the various tissue samples. The frequency of occurrence
    was taken as a measure of the distribution of platinum among various
    body organs. Platinum was frequently found in subcutaneous fat. This
    is surprising, as most platinum compounds are regarded as lipid-
    insoluble. Other target sites were kidney, pancreas, and liver.
    However, the analytical accuracy has been questioned and
    contamination of the samples suspected (NAS, 1977), because the
    baseline levels found by Johnson et al. (1976) were at least one
    order of magnitude lower. The problem of questionable analytical
    reliability reflects the difficulties in interpreting data on trace
    levels of platinum in the environment and in human tissues and body
    fluids.

         New data have been provided by Nygren et al. (1990). Using
    absorptive voltametry (see section 2.4.3.5), the background levels
    of platinum in human blood were found to be in the range of 0.1-2.8
    µg/litre (median 0.6 µg per litre). These results were verified by
    inductively coupled plasma mass spectrometry using gold as an
    internal standard.

    5.3  Occupational exposure during manufacture, formulation, or use

         Occupational exposure occurs during the mining and processing
    of platinum. However, the most common current occupational exposure
    to soluble platinum compounds is through inhalation in platinum
    refining and catalyst manufacture.

    Table 10.  Distribution of tissue samples with detectable platinuma
                                                                      

                                 Number of     Samples with detectable
                                 samples              platinum
                                 analysed          No.         %
                                                                      

    Subcutaneous fat                 74            10          14
    Kidney                           91            11          12
    Pancreas                         84            10          12
    Liver                            90            10          11
    Brain                             9             1          11
    Gonad                            53             5           9
    Adrenal                          60             3           5
    Muscle (psoas)                   97             4           4
    Aorta (descending)               92             3           3
    Heart (left ventricle)           82             2           2
    Spleen                           52             1           2
    Prostate/uterus                  63             1           2
    Thyroid                          73             1           1
    Lung                             95             0           0
    Vertebra (lumbar)                94             0           0
    Rib (fifth)                      97             0           0
    Femur                            57             0           0
    Clavicle                         30             0           0
    Hair, scalp                       9             0           0
    Hair, pubic                       1             0           0

                                   1303            62           5
                                                                      

    a From: Duffield et al. (1976)

         Many countries have set occupational exposure limits. For
    example, in the USA, the time-weighted Threshold Limit Value (TWA-
    TLV) for daily occupational exposure has been established for
    soluble platinum salts at 2 µg Pt/m3 (ACGIH, 1980, 1990). Many
    countries have adopted this ACGIH value. In addition ACGIH (1980,
    1990) recommended a Threshold Limit Value of 1 mg/m3 for platinum
    metal. In the United Kingdom an occupational exposure limit (8-h
    TWA) of 5 mg/m3 has been proposed for platinum metal as total
    inhalable dust (Health and Safety Executive, 1990). 

         The published data base for platinum concentrations at the
    workplace is meagre. Due to analytical shortcomings older data are
    not considered reliable. In an early investigation (Fothergill et
    al., 1945), a platinum content of less than 5 µg/m3 in the
    atmosphere in the immediate neighbourhood of a refinery was measured
    using particle filters. In the dry salts handling area, platinum
    concentrations as high as 70 µg/m3 were found. In another

    investigation (Hunter et al., 1945), the platinum content in the
    atmosphere at various points in four refineries was estimated. At
    most points concentrations varied between 1.6 and 5 µg/m3. Higher
    concentrations were found in the neutralization of platinum salts
    (20 µg/m3), sieving spongy platinum (400-900 µg/m3), and
    crushing ammonium chloroplatinate (1700 µg/m3).

         Workplace measurements in a catalyst production plant in the
    USSR were reported to exceed an air concentration of 2 µg/m3 in
    33% of the measurements (Gladkova et al., 1974).

         In a cross-sectional survey (section 9.2), Bolm-Audorff et al.
    (1988) reported workplace measurements at a platinum refinery in the
    Federal Republic of Germany. In 1986, concentrations of between 0.08
    and 0.1 µg/m3 were measured in the filter press area, but in other
    working areas platinum salt exposure was generally below the
    detection limit of 0.05 µg/m3. No data were given on the number of
    samples.

         The results obtained during a four-month period of measurements
    in a US platinum refinery showed that workplace concentrations
    exceeded the occupational limit of 2 µg/m3 between 50 and 75% of
    the time (Brooks et al., 1990.

         In samples of blood, urine, faeces, and hair from employees at
    a Canadian mine near Sudbury, platinum concentrations were below the
    limits of detection (0.1 µg per litre or 0.1 µg/kg). Tissue samples
    from three out of nine autopsies had detectable platinum
    concentrations in fat (4.5 µg/kg), lung (3.7 µg/kg), or muscle (25.0
    µg per kg) (Johnson et al., 1976). However, since the three
    detectable concentrations were in individuals who, like the other
    six, showed no platinum concentrations in liver, kidney and spleen,
    sample contamination was suggested (NAS, 1977). It was concluded
    that people who work in mining areas probably do not incorporate
    significant amounts of platinum into their body.

         Blood samples collected from 61 refinery workers in New Jersey
    contained no measurable platinum (less than 1.4 µg/litre) (Johnson
    et al., 1976). However, platinum levels in 10% of the urine samples
    were above the detection limit of 0.1 µg/litre, the maximum reported
    value being 2.6 µg/litre.

         Using the method of LeRoy et al. (1977), platinum serum levels
    in 11 platinum refinery workers with positive skin tests were
    analysed. These studies found serum platinum levels ranging from 150
    to 440 µg/litre (mean = 240 µg/litre), the quantification limit
    being 100 µg per litre (Biagini et al., 1985).

         A special case of possible occupational exposure is the
    handling of cisplatin and its analogues by pharmacy and nursing
    staff and other hospital personnel. In a study with two pharmacists

    (one male and one female) and eight female nurses, platinum levels
    in urine (0.6-23.1 µg per litre) were at the limit of sensitivity of
    the AAS method used and did not significantly differ from the
    controls (2.6-15.0 µg/litre). By comparison, the urine of cisplatin-
    treated patients contained on average 7 mg/litre (Venitt et al.
    1984).

    6.  KINETICS AND METABOLISM

         Most toxicokinetic data on platinum, both for experimental
    animals and humans, have been derived from studies with platinum
    complexes.

         Moore et al. (1975c) studied the whole body retention, lung
    clearance, distribution, and excretion of 191Pt in outbred albino
    rats (Charles River CD-1 strain) after single nose-only inhalation
    exposure to different chemical forms of platinum for 48 min.
    Particle concentration in the nose-only exposure chambers was
    approximately 5.0 mg per m3 with 191PtCl4, 5-7 mg/m3 with
    191Pt(SO4)2, and 7-8 mg/m3 with PtO2 and 191Pt metal.
    The aerodynamic diameter was given as 1.0 µm for 191PtCl4 and
    191Pt(SO4)2; both aerosols were generated by a nebulizer. The
    191PtO2 and 191Pt metal aerosols (aerodynamic diameter not
    given) were generated by passing Pt(SO4)2 or PtCl4,
    respectively, through a furnace tube and decomposing them at 600 °C.
    Whole body counts, showed that most of the inhaled 191Pt was
    rapidly cleared from the body, followed by a slower clearance phase
    during the remaining post-exposure period. The whole body retention
    of 191Pt was approximately 41, 33, 31, and 20%, respectively, of
    the initial body burden 24 h after exposure to 191PtCl4,
    191Pt(SO4)2, 191PtO2, and 191Pt metal. After ten days,
    the body burden was only about 1, 5, 8, and 6%, respectively. This
    shows that there was only a slight difference between the clearance
    rates for the various chemical forms, although the clearance of
    191PtCl4 seemed to be the fastest. Clearance from the lungs also
    reflected the two-phase pharmacokinetics in the whole body, with a
    fast clearance phase in the first 24 h followed by a slow phase with
    a half-time of about 8 days.

         Excretion data from the study by Moore et al. (1975c) indicate
    that most of the 191Pt cleared from the lungs by mucociliary
    action was swallowed and excreted via the faeces (half-time 24 h). A
    small fraction of the 191Pt was detected in the urine, indicating
    that little was absorbed by the lungs and the gastrointestinal
    tract. However, no quantitative data were given.

         As shown in Table 11, the portals of entry, lung and trachea,
    contained most of the platinum, i.e. 93.5% and 3.9%, respectively,
    of the total radioactivity (48 618 counts/g) 1 day after exposure.
    Of the other tissues analysed, highest levels were found in the
    kidney and bone, suggesting some accumulation in these organs. The
    low percentages of 1.5% and 0.6%, respectively, on day 1, reflect
    only a low accumulation tendency; no information on the statistical
    significance of these figures was provided.

    Table 11.  Radioactive191Pt distribution in the rat following
               inhalation exposure to platinum metal
               (7-8 mg/m3, 48 min)a
                                                                      

                      Mean counts/g wet weight after exposure for
                  1 day          2 days         4 days         8 days
                                                                      

    Blood            61              43             30             12
    Trachea        1909            2510            738            343
    Lung         45 462          28 784         28 280         23 543
    Liver            52              46             37             17
    Kidney          750            1002            906            823
    Bone            281             258            231            156
    Brain             5               3              1              0
    Muscle           22              10             28              0
    Spleen           39              73             23              5
    Heart            37              58             23              5
                                                                      

    a From: Moore et al. (1975c)

         In a comparative study on the fate of 191PtCl4 (25 µCi per
    animal) in rats following different routes of exposure (Moore et
    al., 1975a,b) retention followed the classical pattern. The highest
    retention was found after intravenous administration, the next
    highest after intratracheal, and the lowest after oral
    administration. For comparison, retention after inhalation was lower
    than after intratracheal administration. However, the total dose was
    much higher with inhalation (7000 µCi) than with intratracheal (25
    µCi) administration. Only a minute amount of 191PtCl4 given
    orally was absorbed. Most of it passed through the gastrointestinal
    tract and was excreted via the faeces. After 3 days less than 1% of
    the initial dose was detected in the whole body. Following
    intravenous administration, 191Pt was excreted in almost equal
    quantities in both faeces and urine but elimination was slower than
    after oral dosing. After 3 days, whole body retention was about 65%
    and after 28 days it was still 14% of the initial dose. By
    comparison, following intratrachael administration about 22% and 8%,
    respectively, were retained by the body after these periods (Moore
    et al., 1975a,b).

         In the same studies the tissue distribution of 191Pt was
    determined. After the single oral dose, the kidney and liver
    contained the highest concentrations, while in the other organs
    there were no elevated levels. In contrast, after intravenous
    administration 191Pt was found in all tissues (Table 12). The high
    concentration of 191Pt found in the kidney shows that once
    platinum is absorbed most of it collects in the kidney and is
    excreted in the urine. The liver, spleen, and adrenal gland also
    contained higher platinum concentrations than the blood. The lower
    level in the brain suggests that platinum ions probably cross the
    blood-brain barrier only to a limited extent (Moore et al.,
    1975a,b).

         This was confirmed by Lown et al. (1980) in male Swiss mice
    given single intragastric doses of Pt(SO4)2 (144 or 213 mg Pt/kg
    body weight). Platinum levels in the blood were several times higher
    than in the brain. Clearance from the whole body was slower than in
    the rat studies. This could be due to species-specific differences.
    In addition, the mice received much higher doses than the rats. Lown
    et al. (1980) noted an enhancing effect of the higher dose on
    absorption.

         In a long-term study, Holbrook (1977) found evidence that a
    platinum-binding protein is induced. Male Sprague-Dawley rats
    received platinum salts  ad libitum either in the drinking-water or
    in the dry feed. The sequential platinum contents in the tissues
    analysed are shown in Table 13. The data demonstrate that the oral
    administration of water-soluble platinum compounds, i.e. PtCl4 and
    Pt(SO4)2, results in accumulation of platinum in some organs,
    primarily the kidney. After 4 weeks, the platinum content of the
    kidney was about 8-fold higher than that of the liver and spleen,
    and at least 16-fold higher than in the blood and testis (except for
    the highest dose of PtCl4). The total platinum intake after 4
    weeks increased by 4.3 times and the platinum content in kidney,
    spleen, and blood increased by at least 7 times as compared with the
    1-week levels. It is notable that a more than 2-fold increase in the
    intake of platinum (after a 4-week consumption of PtCl4 in the dry
    feed; 743 vs. 1616 mg Pt/rat) did not lead to an increase in the
    platinum content of the kidney, in contrast to the situation in the
    liver and spleen. This observation was not corroborated with
    Pt(SO4)2.

    
    Table 12.  Radioactive191Pt distribution (counts/g wet weight) in the rat following a
               single intravenous dose of PtCl4(25 µCi/animal)a
                                                                                             

    Tissue            1 day               2 days              7 days              14 days
                    %    counts/g       %    counts/g       %    counts/g       %    counts/g
                                                                                             

    Blood          0.91    22 147      0.81    19 732      0.52    12 774      0.32      7921
    Heart          0.48    11 819      0.50    12 201      0.36     8 805      0.19      4593
    Lung           0.75    18 432      0.66    16 139      0.46    11 180      0.24      5770
    Liver          1.51    36 848      1.28    31 274      1.05    25 732      0.19      4733
    Kidney         6.65   162 227      6.59   160 656      5.66   138 010      1.24    30 195
    Spleen         1.68    41 085      1.89    45 840      2.29    55 764      0.86    20 973
    Pancreas       0.91    22 208      0.80    19 487      0.60    14 802      0.16      3973
    Bone           0.53    13 146      0.52    12 800      0.37      8932      0.22      5440
    Brain          0.05      1150      0.10      2485      0.02       595      0.01       265
    Fat            0.18      4487      0.18      4501      0.13      3201      0.02       429
    Testes         0.17      4186      0.27      6540      0.16      3873      0.06      1431
    Adrenal        1.86    45 439      1.74    42 363      1.09    26 667      0.25      6190
    Muscle         0.19      4798      0.19      4671      0.14      3441      0.09      2146
    Duodenal
      segment      0.52    12 725      0.25      6044      0.16      4031      0.06      1410
                                                                                             

    a Adapted from: Moore et al. (1975a)

    Table 13.  Dietary levels, total platinum consumption, and platinum content of tissues
               after oral administration of platinum salts to ratsa
                                                                                                 

                         Pt consumption             Pt content (mg/kg wet weight; mean ± SE)b
    Platinum       Duration  Dietary  Total
    salt           (weeks)   level    (mg Pt/     Liver   Kidney  Spleen  Testis  Brain   Blood
                             (as Pt)  rat)
                                                                                                 

    PtCl4             1        319c      59         2.2     4.8    0.24                    0.23
                                                          ± 0.2

    PtCl4             4        319c     255         2.5    33.7     4.8     1.5    0.11     2.1
                                                  ± 0.9   ± 3.5   ± 1.5   ± 0.5  ± 0.07   ± 0.4

    PtCl4             4       1147d     743         3.2    33.5     3.1     1.1  < 0.02     1.5
                                                  ± 0.9   ± 6.3   ± 0.9   ± 0.4           ± 0.4

    PtCl4             4       2581d    1616         8.9    32.4     6.4     1.7    0.12     1.6
                                                  ± 1.2   ± 4.6   ± 3.0   ± 0.3  ± 0.08   ± 0.2

    PtCl4            13        106c     389         1.3    14.9     1.6    0.94  < 0.06     0.9
                                                  ± 0.3   ± 0.4   ± 0.3  ± 0.20          ± 0.08

    Pt(SO4)2.4H2O     1        106c      26        0.07    0.26  < 0.02  < 0.04            0.05
                                                         ± 0.02

    Pt(SO4)2.4H2O     1        319c      78        0.85     4.6    0.13          < 0.02    0.22

    Pt(SO4)2.4H2O     4       1147d     716         3.5    43.4     3.2     1.1    0.33     1.6
                                                  ± 0.4   ± 8.3   ± 0.5   ± 0.1  ± 0.18   ± 0.3

    PtO2              4       5808d    4308       < 2.2   < 2.2  < 0.02  < 0.07  < 0.02  < 0.04
                                                                                                 

    a Adapted from: Holbrook (1977)
    b Standard error (SE) is given for four values; only the mean is given when two values
      are available
    c mg Pt/litre
    d mg Pt/kg
             In contrast to the water-soluble salts, insoluble PtO2 was
    only taken up in minute amounts even though the salt was
    administered in the diet at an extremely high level resulting in a
    total consumption of 4308 mg Pt/rat over the 4-week period
    (Holbrook, 1977).

         Moore et al. (1975a) also administered 191PtCl4 (25
    µCi/animal) intravenously to 15 pregnant rats on day 18 of gestation

    to determine placental transfer after 24 h. High levels of 191Pt
    radioactivity were found in the kidney (127 064 counts/g) and liver
    (43 375 counts/g), compared with 10 568 counts/g in the blood.
    Accumulation was also found in the placenta (27 750 counts/g).
    191Pt was detected in the 60 fetuses examined, but only at very
    low concentrations (an average of 432 counts/g). Thus, the placental
    barrier is crossed to a limited extent.

         In contrast to the simple platinum salts, the diammine
    complexes such as cisplatin (see footnote in section 1.2) are
    excreted primarily in the urine. In mice, Hoeschele & Van Camp
    (1972) found about 90% of the intraperitoneally injected dose in the
    urine within five days. Little or no excretion occurred via the
    faeces. A high urinary recovery was also observed in rats and dogs
    (Hoeschele & Van Camp, 1972; Lange et al., 1972; Litterst et al.,
    1976a,b, 1979; Cvitkovic et al., 1977). 

         The excretion of both  cis- and  trans-
    diamminedichloroplatinum(II) follows a biphasic pattern with a fast
    initial alpha-phase and a second slow ß-phase. The variation in the
    plasma half-lives is due to species differences and variations in
    dose, route of administration, time points analysed, and analytical
    method used (Litterst et al., 1979). The extremely rapid alpha-phase
    accounts for early, high levels of platinum in kidney, liver, skin,
    bone, ovary, and uterus. The prolonged ß-phase results in detectable
    urine platinum concentrations 30 days after a single dose.

         For both the simple platinum salts and cisplatin complexes, an
    initial rapid clearance is followed by a prolonged clearance phase
    during the remaining post-exposure period, and there is no evidence
    for markedly different retention profiles between these two groups
    of platinum compounds (Rosenberg, 1980).

         All animal species studied show a similar organ distribution
    pattern for cisplatin. An initial distribution to nearly all tissues
    is followed by accumulation in the first hour mainly in kidney,
    liver, muscle, and skin. By the end of the first day, plasma levels
    decrease rapidly and there are elevated platinum levels in numerous
    other tissues (Litterst et al., 1979).

         Cisplatin is extensively bound to plasma proteins; 90% of it
    may be bound 2 h after an intravenous injection. The bound portion
    is no longer cytotoxic (Safirstein et al., 1983; Sternson et al.,
    1984). In addition to its reactivity with plasma protein, renal
    excretion leads to a very low concentration of free cisplatin in the
    plasma and to a rapid accumulation in the kidney. Due to the
    presence of high chloride ion concentrations, cisplatin is
    relatively stable in extracellular fluids (see also section 7.6),
    which explains why it is excreted mainly in the unchanged form in
    human and rat urine (Safirstein et al., 1983).

    7.  EFFECTS ON LABORATORY MAMMALS AND IN VITRO TEST SYSTEMS

    7.1  Single exposure

         Acute toxicity data on platinum mainly relate to its
    coordination complexes, the chloroplatinates and ammines. Hofmeister
    (1882) was one of the first to test ammonium salts containing
    divalent and tetravalent platinum with various numbers of ammine
    ligands. He injected solutions of platinum complexes into the dorsal
    lymphatic sac of single frogs and subcutaneously into the dorsal
    skin of single rabbits. The symptoms observed included vomiting and
    diarrhoea with bloody stools and a "curare-like" action of the
    salts.

         The acute toxicity of platinum depends considerably on the
    species of platinum involved (Table 14). Soluble platinum compounds
    are much more toxic. Hence, in the study of Holbrook (1976a) oral
    toxicity to rats decreased in the following order: PtCl4 >
    Pt(SO4)2.4H2O > PtCl2 > PtO2. For the two latter
    compounds no LD50 could be derived. 

         Signs of poisoning observed, for example, with
    (NH4)2[PtCl4], include hypokinesia, piloerection, diarrhoea,
    clonic convulsions, laboured respiration, and cyanosis (Degussa,
    1989a).

         Hexachloroplatinic acid is highly nephrotoxic in rats. After an
    intraperitoneal LD50 injection of 40-50 mg/kg, rats died of renal
    failure, hypocalcaemia, and hyperkalaemia. The necrotizing renal
    tubular lesions involved the entire renal cortex (Ward et al.,
    1976).

         In its metallic state, platinum has an extremely low acute
    toxicity. Thus some alloys containing platinum are used in
    protheses. Fine dust particles of metallic platinum, 1-5 µm in
    diameter, orally administered to rats caused only slight necrotic
    changes in the gastrointestinal epithelium, granular dystrophy of
    hepatocytes, and swelling in the epithelium of the convoluted renal
    tubules (Roshchin et al., 1979, 1984). The highest dose given was
    not lethal. The dose was reported as "129 µA/kg" (25 167 µg per kg;
    personal communication from Prof. A.V. Roshchin to IPCS dated 3
    April 1991).

         Due to the different absorption rates for platinum compounds,
    the route of administration also affects the toxicity, the
    intraperitoneal and intravenous routes leading to much higher
    toxicity than the oral route (Table 14).

        Table 14.  Acute toxicity of platinum and platinum compounds after oral (p.o.),
               intraperitoneal (i.p.), and intravenous (i.v.) administration to rats

                                                                                               

    Compound                 Route     Sexa         LD50             Reference
                                                    (mg/kg)
                                                                                               

    PtO2                     p.o.      m            > 8000           Holbrook et al. (1976a,b)
    PtCl2                    p.o.      m            > 2000           Holbrook et al. (1976a,b)
    PtCl2                    p.o.      m            3423b            Roshchin et al. (1984)
    PtCl2                    i.p.      m            670              Holbrook et al. (1976a,b)
    PtCl4                    p.o.      m            240              Holbrook et al. (1976a,b)
    PtCl4                    p.o.      m/f          276b             Roshchin et al. (1984)
    PtCl4                    i.p.      m            38               Holbrook et al. (1976a,b)
    PtCl4                    i.v.      m            26.2             Moore et al. (1975b)
    PtCl4                    i.v.      m            41.4             Moore et al. (1975b)
    Pt(SO4)2.4 H2O           p.o.      m            1010             Holbrook et al. (1976a,b)
    Pt(SO4)2.4 H2O           i.p.      m            310c             Holbrook et al. (1976a,b)
    Pt(SO4)2.4 H2O           i.p.      m            138-184c         Holbrook et al. (1976a,b)
    (NH4)2[PtCl6]            p.o.      m/f          195b             Roshchin et al. (1984)
    (NH4)2[PtCl6]            p.o.      m/f          approx. 200      Johnson Matthey (1978a)
    (NH4)2[PtCl4]            p.o.      m            212              Degussa (1989a)
    (NH4)2[PtCl4]            p.o.      f            125              Degussa (1989a)
    H2[PtCl6]                i.p.      m            40-50            Ward et al. (1976)
    Na2[PtCl6]               p.o.      m/f          25-50            Johnson Matthey (1978b)
    Na2[Pt(OH)6]             p.o.      m/f          500-2000         Johnson Matthey (1978c)
    K2[PtCl4]                p.o.      m/f          50-200           Johnson Matthey (1981a,b)
    K2[Pt(CN)4]              p.o.      m/f          > 2000           Johnson Matthey (1977a)
    [Pt(NH3)4]Cl2            p.o.      m/f          > 15 000         Johnson Matthey (1977b)
    [Pt(NO2)2(NH3)2]         p.o.      m            approx. 5000     Degussa (1989b)
    [Pt(NO2)2(NH3)2]         p.o.      f            > 5110           Degussa (1989b)
    [Pt(C5H7O2)2]            p.o.      m/f          > 500            Johnson Matthey (1976a)
    cis-[PtCl2(NH3)2]d       p.o.      m/f          approx. 20       Johnson Matthey (1977c)
    cis-[PtCl2(NH3)2]d       i.p.      m            12               Kociba & Sleight (1971)
    cis-[PtCl2(NH3)2]d       i.p.      m            7.7              Ward & Fauvie (1976)
    cis-[PtCl2(NH3)2]d       i.v.      m            7.4              Ward et al. (1976)
    trans-[PtCl2(NH3)2]      p.o.      m/f          > 5110           Degussa (1989c)

                                                                                               

    a m = male; f = female
    b Calculated from the original values given as mg A/kg (= milligramme atom/kg)
    c Results from two different laboratories
    d See footnote in section 1.2

    
    7.2  Short-term exposure

         Holbrook et al. (1975) conducted repeated-dose oral toxicity
    studies on male Sprague-Dawley rats. The soluble salts PtCl4 and
    Pt(SO4)2.4H2O were added to the drinking-water, which was
    consumed  ad libitum. Within the observation period of 4 weeks, a
    concentration of 0.54 mmol/litre (182 mg PtCl4/litre or 248 mg
    Pt(SO4)2.4H2O per litre) did not affect the normal weight
    gain. A 3-fold increase in the platinum concentration to 1.63
    mmol/litre reduced the weight gain by about 20% during the first
    week only; this paralleled a 20% decrease in feed and fluid
    consumption. The dietary administration of PtCl4 at concentrations
    of 0.5 mmol/litre for approximately 30 days or 1.6 mmol/litre for 8
    days (169 and 539 mg/litre, respectively) did not affect the weights
    of any of the five organs investigated, i.e. liver, kidney, spleen,
    heart, and testes. Similarly, the administration of 1.6 mmol per
    litre of Pt(SO4)2.4H2O (734 mg/litre) for 8-9 days did not
    significantly affect organ weights. Total platinum intake for each
    of these three experimental conditions was approximately 50 mg per
    rat. When 1.6 mmol PtCl4/litre (539 mg/litre) was given for about
    30 days (total intake of about 250 mg Pt per rat), the kidney weight
    increased by about 6-10%. No effects on the level of microsomal
    protein or the activities of aniline hydroxylase and aminopyrine
    demethylase in liver microsomes were found (Holbrook, 1976b).

    7.3  Skin and eye irritation; skin and respiratory sensitization

    7.3.1  Skin irritation

         The dermal irritancy of several platinum compounds was tested
    on albino rabbits using comparable procedures and evaluation
    criteria. Platinum test materials were spread on abraded and intact
    skin sites, located dorsolaterally on the animals' trunks. The skin
    reactions were evaluated after 24, 48, and 72 h, and are summarized
    in Table 15. 

    7.3.2  Eye irritation

         Summarized data on eye irritation are presented in Table 15.
    All tested platinum salts were either corrosive or irritating to
    varying degrees.

    7.3.3  Skin sensitization

         In a study by Kolpakova & Kolpakov (1983), platinum
    hydrochlorides administered intravenously to rabbits in repeated
    doses induced sensitization confirmed by the basophil degranulation
    test, neutrophil damage index, leucocyte agglomeration, neutrophil
    alteration, and the drop skin and skin fenestra tests. These data
    are unusual and have not been confirmed in other studies.


    
    Table 15.  Skin and eye irritation by platinum compoundsa
                                                                                                                                         

                                            Skin irritation testb                                    Eye irritation testc
    Compound                   Primary         Classification      Reference                  Classification       Reference
                               irritation
                               score
                                                                                                                                         

    PtO2                       0               non-irritant        Campbell et al. (1975)
    PtCl2                      0.4d            non-irritant        Campbell et al. (1975)
    PtCl4                      2.2e            irritant            Campbell et al. (1975)
    (NH4)2[PtCl6]              1.3             mild irritant       Johnson Matthey (1978d)
    (NH4)2[PtCl4]              2.7             slight irritant     Degussa (1988a)            corrosive            Degussa (1988b)
    Na2[PtCl6]                 0.5             mild irritant       Johnson Matthey (1978e)    irritant             Johnson Matthey (1978f)
    Na2[Pt(OH)6]               5.4             severe irritant     Johnson Matthey (1978g)
    K2[PtCl4]                  0f              non-irritant        Johnson Matthey (1981c)    irritant             Johnson Matthey (1981d)
    K2[Pt(CN)4]                0.3             mild irritant       Johnson Matthey (1977d)    irritant             Johnson Matthey (1978h)
    [Pt(NH3)4]Cl2              2.8             moderate irritant   Johnson Matthey (1977e)    strongly irritant    Johnson Matthey (1977f)
    [Pt(NO2)2(NH3)2]           0               non-irritant        Degussa (1989d)            severely irritant    Degussa (1989e)
    [Pt(C5H7O2)2]              0               non-irritant        Johnson Matthey (1976b)    mildly irritant      Johnson Matthey (1976c)
    cis-[PtCl2(NH3)2]          0.13            mild irritant       Johnson Matthey (1977g)    severely irritant    Johnson Matthey (1977h)
                                                                                                (toxic)
    trans-[PtCl2(NH3)2]        0               non-irritant        Degussa (1988c)            corrosive            Degussa (1988d)
                                                                                                                                         

    a Adapted from Bradford (1988)
    b The skin tests (patch tests on albino rabbits) were carried out according to the US Federal Register 1973 Skin Test (24 h-contact)
      (Johnson Matthey) or according to OECD Test Guideline No. 404 (4-h contact) (Degussa).  The method used by Campbell et al. (1975)
      is comparable to these tests.
    c The eye irritation tests on albino rabbits were carried out according to the US Federal Register 1973 Eye Test (Johnson Matthey)
      or according to OECD Guideline No. 405 (Degussa).
    d Average score from 0.2 (intact skin) and 0.6 (abraded skin); a score of 0-0.9 was considered as "non-irritant" by the authors.
    e Average score from 1.8 (intact skin) and 2.6 (abraded skin); a score of 2 was considered as "irritant" by the authors.
    f Using OECD Test Guideline No. 404 (4-h contact).


    
         Taubler (1977) injected rabbits, guinea-pigs, and mice
    subcutaneously and intravenously with PtSO4 (0.05-0.3 mg/litre
    with and without NH4Cl) three times a week for 4 weeks. No
    induction of an allergic state was found, as measured by skin tests
    (guinea-pigs and rabbits), passive transfer, and footpad tests
    (mice). Administration of platinum-egg-albumin complex also failed
    to sensitize the experimental animals.

         In a study by Murdoch & Pepys (1985), rats were immunized with
    ovalbumin-platinum. Sera of the animals which were positive in the
    passive cutaneous anaphylaxis (PCA) test and a radioallergosorbent
    test (RAST) were pooled and used for PCA tests with other platinum
    salts having differing ligands. A significant cross-reactivity
    between ammonium tetrachloroplatinate(II), ammonium
    hexachloroplatinate(IV), and the conjugated tetrachloroplatinate was
    observed. There was very limited or no cross-reactivity with the
    compounds cesium trichloronitroplatinate(II),  cis-
    diamminedichloroplatinum(II), potassium tetracyanoplatinate(II), and
    tetraammineplatinum(II) chloride.

    7.3.4  Skin and respiratory sensitization

         Biagini et al. (1983) exposed two groups of Cynomolgus monkeys
     (Macaca fasicularis) to disodium hexachloroplatinate,
    Na2[PtCl6], by nose-only inhalation of 200 and 2000 µg/m3,
    4h/day, biweekly for 12 weeks. Another group was exposed
    percutaneously to the salt (20 mg/ml) applied biweekly to an open
    patch area in the intrascapular region. Two weeks after termination
    of exposure, bronchoprovocation challenges with Na2[PtCl6] and
    pulmonary function tests were performed. Percutaneous application
    did not affect post-challenge pulmonary function. The 200 µg/m3
    group showed significantly greater pulmonary deficits as compared to
    control animals. Average pulmonary flow resistance (RL) was
    significantly increased, while forced expiratory volume in 0.5
    seconds, corrected for vital capacity (FEV0.5/FVC), was decreased.
    No dermal hypersensitivity was observed. The question of whether the
    observed pulmonary hyper-reactivity is due to a
    superpharmacological, irritant, local immune, or combination
    mechanism is unresolved. The absence of hyper-reactivity in the
    2000-µg/m3 group suggests a possible pulmonary tolerance
    mechanism, tachyphylaxis, or delay in the development of symptoms at
    higher sensitization concentrations.

    7.3.5  Respiratory sensitization

         In a 12-week inhalation experiment with Cynomolgus monkeys
    exposed to either ammonium hexachloroplatinate (200 µg/m3) or
    ozone (2000 µg/m3; 1 ppm) alone or as a combination of both,
    Biagini et al. (1986) found significant allergic platinum dermal
    hypersensitivity, based on concentrations necessary to give a
    positive test, and pulmonary hyper-reactivity only with concomitant

    exposure to ozone. Inflammation, epithelial damage, cell
    recruitment, and modifications of cellular tight junctions caused by
    ozone may increase the penetration of platinum into the pulmonary
    epithelium and subepithelial tissue. This could lead to increased
    protein binding sites or absorption of the platinum salts and
    finally to the development of pulmonary hyper-reactivity and
    allergic sensitization (Biagini et al., 1986).

    7.3.6  Sensitization by other routes

         Murdoch & Pepys (1984) investigated the immunological responses
    to complex platinum salts in the female hooded Lister rat, a strain
    that produces high and consistent levels of circulating IgE when
    immunized with low doses of antigen together with  Bordetella
     pertussis adjuvant, and that reacts with enhanced synthesis of IgE
    upon secondary boosting. Sensitization with the free salt of
    ammonium tetrachloroplatinate, (NH4)2[PtCl4], was attempted
    via the intraperitoneal, intramuscular, intradermal, subcutaneous,
    intratracheal, and footpad routes over a wide range of doses (1 to
    1000 µg). Both  B. pertussis and/or aluminium hydroxide gel were
    added as adjuvants. As shown by direct skin testing using the PCA or
    RAST methods, no sensitization was achieved. However, sensitization
    was obtained by intraperitoneal injection of the platinum salt
    conjugated to ovalbumin (OVA). Antibodies were produced to Pt-OVA
    and to OVA alone. Specific sensitization was demonstrated both by
    PCA challenge with Pt-BSA (no positive PCA reactions were seen with
    BSA alone) and by positive RAST, demonstrated by RAST inhibition
    techniques with a Pt-BSA conjugate.

    7.4  Reproductive toxicity, embryotoxicity, and teratogenicity

         Only limited experimental data concerning the effects of
    platinum on reproduction, embryotoxicity, and teratogenicity are
    available. D'Agostino et al. (1984) studied the embryotoxic effects
    of platinum compounds in Swiss ICR mice. Single doses of either
    Pt(SO4)2.4H2O or Na2[PtCl6].6H2O were administered
    intragastrically or subcutaneously, respectively, on the 7th and
    12th day of gestation. The pups were cross-fostered to treated or
    untreated dams at birth and were culled to three animals of each sex
    per litter. In the Pt(SO4)2 study, the LD1 wdose of 200 mg
    Pt/kg caused a reduced offspring weight from day 8 to day 45
    postpartum. The major effect of disodium hexachloroplatinate (20 mg
    Pt/kg) was a reduced activity level exhibited by the offspring of
    dams exposed on the 12th day of gestation. The general activity was
    quantified on an activity field consisting of concentric circles.
    The number of lines crossed during 1 min comprised the activity
    score. On days 60-65 postpartum, open-field behaviour (ambulation
    and rearing), rotarod performance, and passive avoidance learning
    were investigated in the adult offspring. No effects were found
    after administration on the 7th day, but administration on day 12 of
    gestation had significant behavioural effects.

         Solid platinum, wire or foil, is considered to be biologically
    inert and adverse effects on implantation are probable due to the
    physical presence of a foreign object in the uterus (Barlow &
    Sullivan, 1982).

         Kraft et al. (1978) reported normal fertility in male rabbits
    with open tube gold/platinum devices inserted into the vas deferens.
    There was an initial decrease in sperm count and motility, but these
    parameters returned to normal after three weeks. At 117-426 days
    after insertion, 7 out of 9 animals were fertile in numerous
    matings.

         Effects on human sperm motility were investigated by Kesseru &
    Leon (1974). Fresh sperm were incubated for up to 5 h in the
    presence of strips of platinum or other metals. Motility after 2 and
    5 h was 60 and 30%, respectively, compared to 10 and 0% for copper,
    40 and 7% for silver, and 90 and 65% for gold.

         Platinum wire inserted into the uterus of rats was reported to
    reduce the implantation of fertilized ova. An 83% reduction in the
    number of implantation sites in the affected uterine horn, compared
    to the unoperated horn, was found in rats unilaterally implanted on
    day 3 (Chang et al., 1970). Chang & Tatum (1975) found no effect on
    embryonic or fetal survival if platinum wire was inserted after
    implantation on day 6. Tobert & Davies (1977) showed a 37% reduction
    in the number of implanting ova in the uteri of rabbits containing
    platinum foil.

    7.5  Mutagenicity and related end-points

         The genotoxic effects of platinum compounds have been
    investigated in bacterial systems, mammalian cell cultures and  in
     vitro studies.

         In bacteria many of the tested platinum compounds were
    moderately mutagenic. Cisplatin and some of its analogues showed the
    greatest mutagenic potential; other platinum compounds were less
    mutagenic.

         In Ames tests, nearly all using the test strains  Salmonella
     typhimurium TA98 and TA100, positive results were reported
    (Lecointe et al., 1977; Andersen, 1979; Suraikina et al., 1979; Life
    Science Research, 1980a; Kanematsu et al., 1980). With
    [Pt(NH3)4]Cl2, mutagenic potential was observed in strain
    TA1537 with and without S-9 metabolic activation (Life Science
    Research, 1980a).

         The induction of reverse mutations in the plasmid-carrying
    strains TA98 and TA100 indicated base-pair substitution and frame-
    shift mutations (Lecointe et al., 1977; Suraikina et al., 1979;
    Kanematsu et al., 1980). 

         (NH4)2[PtCl6] but not PtCl4 caused base-change mutation
    in  Escherichia coli B/r WP2 (Kanematsu et al., 1980).

         The growth of a Rec strain of  Bacillus subtilis was
    significantly inhibited by (NH4)2[PtCl6] (0.1 mol/litre),
    H2[PtCl6] (0.01 mol/litre), and PtCl4 (0.01 mol/litre)
    (Kanematsu et al., 1980).

         In a mutagenic test with the mouse lymphoma cell line L 5178Y,
    cisplatin, transplatin, and PtCl4 produced significantly higher
    mutation frequencies than occurred in the controls, but
    [Pt(NO2)2](NH3)2 and PtCl2 did not (Sandhu, 1979).

         Cellular resistance to the toxic effects of two platinum
    complexes was introduced into Chinese hamster ovary (CHO) cells by
    continuous exposure to K2[PtCl6] and Pt(SO4)2 for 5 and 4
    months, respectively. These cell lines had resistant phenotypes
    stable for at least 55 population doublings in the absence of a
    platinum compound. The induced resistances were interpreted by the
    authors to be a result of mutation and selection (Smith et al.,
    1984).

         In a micronucleus test in mice involving oral administration of
    [Pt(NH3)4]Cl2, no significant increase in the incidence of
    micronucleated polychromatic erythrocytes was found. Additionally,
    [Pt(NH3)4]Cl2 did not markedly inhibit bone marrow cell
    division at any level (Life Science Research, 1980b). Also, no
    evidence of induced chromosomal damage leading to micronucleus
    formation in polychromatic erythrocytes was observed after oral
    administration of K2[PtCl4] in mice (Life Science Research,
    1981a).

         No significant increase in the incidence of aberrant metaphases
    was found in bone marrow cells after subacute oral administration of
    [Pt(NH3)4]Cl2 or K2[PtCl4] to Chinese hamsters (Life
    Science Research, 1981b, 1982).

         K2[PtCl4] and [Pt(NH3)4]Cl2 induced no increase in
    the frequency of sex-linked recessive lethal mutations in
     Drosophila melanogaster (Life Science Research, 1980c, 1981c).

         In a structure-mutagenicity study with the CHO:HGPRT-system,
     cis-[Pt(NH3)2Cl2] was the most potent of six platinum
    compounds tested. Based on the slope of the mutation induction
    curve, the approximate relative mutagenic activity of  cis-
    [Pt(NH3)2Cl2], K[Pt(NH3)Cl3], and [Pt(NH3)3Cl]Cl was
    100:9:0.3. The mutation frequency for K2[PtCl4] and  trans-
    [Pt(NH3)2Cl2] was related to the concentration used, but was
    not much greater than the maximum spontaneous mutation frequency. No
    mutagenic activity was observed for [Pt(NH3)4]Cl2. The
    relative cytotoxicity of the tested compounds was similar.

    Additionally, it was found that  cis- and  trans-
    [Pt(NH3)2Cl2] bind to DNA after entering the cell, but the
    relative mutagenicities are not a consequence of different initial
    levels of DNA binding (Johnson et al., 1980).

         Dose-dependent forward mutations were induced by PtCl4 to 8-
    azaguanine resistance (8-AGR/HGPRT locus) in Chinese hamster ovary
    (CHO-S) cells. In addition there was an increased dose-related
    frequency of CHO-AUXB1 reversion (Taylor et al., 1979)

         Cisplatin, which is not reviewed in detail in this document
    (see footnote in section 1.2), induces structural chromosomal
    aberrations and sister chromatid exchanges in cells of rodents
    treated  in vivo, chromosomal aberrations, micronuclei, and sister
    chromatid exchanges in both human and rodent cells  in vitro, and
    mutation and DNA damage in rodent cells  in vitro. Cisplatin is
    also mutagenic in  Drosophila, fungal, and bacterial test systems
    (IARC, 1987a).

    7.6  Carcinogenicity and anticarcinogenicity

         No experimental data are available on the carcinogenicity of
    platinum and platinum compounds except for cisplatin (see footnote
    in section 1.2). IARC (1987b) considered sufficient the evidence for
    the carcinogenicity of cisplatin for animals (see chapter 13).

         Cisplatin and its analogues, however, are exceptional compared
    to the other platinum compounds. This is reflected by the unique
    mechanism for their anti-neoplastic activity demonstrated in  in
     vitro studies (Rosenberg, 1980, 1985). At low doses cisplatin
    produces specific inhibition of DNA synthesis (but not of RNA and
    protein synthesis) by causing DNA lesions such as monofunctional
    adducts, bifunctional binding to a single base moiety, and DNA
    cross-links of inter- and intrastrand types (Harder & Rosenberg,
    1970; Howle & Gale, 1970). There is sufficient evidence that the DNA
    cross-links are responsible for cellular toxicity, but not for anti-
    tumour activity. For the latter, another observation probably plays
    the decisive role; only the cis isomer forms a closed ring chelate
    of the aquated cisplatin with guanine at a certain position of
    guanine. Thus, intrastrand DNA cross-linking is considered to be the
    most important reason for anti-tumour activity. It appears that, due
    to the cisplatin-induced DNA cross-links, the replication of DNA is
    impaired in cancer cells, while in normal cells the cisplatin
    lesions on guanine are repaired before replication (Rosenberg, 1985;
    Pinto & Lippard, 1985).

         The high chloride concentration of the extracellular fluid (112
    mmol/litre) is sufficient to limit the substitution of water ligands
    for chloride. However, within the cell the platinum complex is
    exposed to low chloride concentrations (4.4 mmol/litre) and
    hydrolysis of the chloride leaving groups can occur (Rosenberg,

    1975), a process that has been shown to accelerate the rate of
    reaction of platinum with DNA (Johnson et al., 1980) and to increase
    its toxicity (Litterst, 1981). This hydration provides the only
    known activation process required for cisplatin to react with
    molecules in the cell, and metabolic activation is not required
    (Rosenberg, 1980). The binding of cisplatin with plasma proteins, on
    the other hand, is not inhibited by chloride and presumably involves
    a different mechanism (De Conti et al., 1973), such as the strong
    electrophiles on proteins (Cleare, 1977a).

    7.7  Other special studies

    7.7.1  Effects on alveolar macrophages

         Rabbit alveolar macrophages exposed to the water-soluble
    platinum(IV) chloride at a concentration of 0.4 mmol/litre (78 mg
    Pt/litre) for a period of 20 h exhibited a 50% reduction in
    macrophage viability. A reduction in phagocytic activity and a
    decrease in total cellular adenosine triphosphate to 50% of the
    value in control macrophages was observed at 0.21 and 0.25
    mmol/litre (41 and 48 mg Pt/litre). Platinum(IV) oxide (PtO2) did
    not dissolve in the culture medium and, hence, was ineffective at
    concentrations as high as 500 mg/litre (Waters et al., 1975).

    7.7.2  Non-allergic mediator release

         Investigations in guinea-pigs, rats, and dogs showed an
    increase in bronchomotility and histamine release after intravenous
    treatment with disodium chloroplatinate, Na2[PtCl6] (Saindelle &
    Ruff, 1969; Parrot et al., 1969). 

         Saindelle & Ruff (1969) noticed dyspnoea one minute after an
    intravenous injection of disodium chloroplatinate (20 mg/kg) into
    guinea-pigs. Within 5 min an intense attack of asthma occurred
    resulting in death. Histamine release occurred following the
    injection and the blood histamine level was greatly increased. The
    injection of a smaller dose (1-2 mg/kg) resulted in bronchospasm
    comparable to that caused by 3 µg/kg of histamine. Repeated
    injections of histamine caused reproducible changes in bronchial
    motility, whereas the platinum compound caused tachyphylaxis.

         The intense breathing difficulties observed in these studies
    were presumably due to non-allergenic histamine release. This
    nonspecific histamine release has complicated the interpretation of
    both animal and human studies with respect to the conclusion of
    allergic sensitization. 

    7.7.3  Effects on mitochondrial function

         No pronounced effects of platinum on the mitochondrial function
    of liver, heart, lung or kidney cells were observed in an  in vitro

    test on succinate-stimulated O2 uptake 24 and 48 h after
    intragastric administration of 40 and 80 µmol K2[PtCl6]/litre
    (19 and 38 mg/litre) to Sprague-Dawley rats (Michael et al., 1976).

    7.7.4  Effects on the nervous system

         The open field behaviour of adult Swiss mice has been found to
    be influenced by platinum salts administered intragastrically in the
    form of a single dose or of repeated doses. A single dose of
    Pt(SO4)2 at the LD25 level (213 mg Pt/kg body weight)
    depressed ambulation significantly and rearing marginally. For
    ambulation, this pattern persisted from 4 h to 7 days after
    administration, although the effect was most obvious at 4 h.
    Repeated doses of the same salt at the LD1 level (up to 10 doses
    of 109 mg Pt/kg every 72 h) caused a marginal depression of activity
    and exploratory behaviour (Lown et al., 1980). Also, a single dose
    of Na2[PtCl6] depressed ambulation significantly (Massaro et
    al., 1981).

         During the course of a reproduction study, behavioural effects
    were observed in the offspring of mice treated with sodium
    hexachloroplatinate (see section 7.4; D'Agostino et al., 1984). 

    7.7.5  Side effects of cisplatin and its analoguesa

         As discussed in section 8.3, the therapeutic use of cisplatin
    in humans can be accompanied by several toxic side-effects. In
    animal studies, only some of which are presented in this monograph,
    similar effects were observed.

         Ward et al. (1976) investigated the nephrotoxicity of cisplatin
    and its analogues in male F-344 (Fischer CDF) rats. An intravenous
    LD50 dose of cisplatin (7.4 mg Pt/kg body weight) caused an
    increase in the blood urea nitrogen and creatinine levels reaching a
    peak on days 4 to 5. Diarrhoea developed by day 3. Necrotizing
    enteritis of the small intestine, caecum, and colon, cellular
    depletion of bone marrow and thymus, and acute degenerative and
    necrotizing renal tubular lesions also occurred (Ward et al., 1976).

         Oxoplatinum ( cis-dichlorodiammine-trans-
    dihydroxyplatinum(IV)) also caused marked nephrotoxicity after
    intravenous administration (20 mg/kg as a single dose) to rats.
    However, another cisplatin analogue, CBDCA ( cis-diammine-l,1-
    cyclobutane dicarboxylate platinum(II)), did not result in
    significant changes in renal function parameters (Laznickova et al.,
    1989).

                      

    a    See footnote in section 1.2.

         Cisplatin has been found to cause bone marrow suppression. The
    surviving fraction of haemopoietic bone-marrow system cells in mice
    decreased from 1 to 0.03 after treatment with an LD50 dose of
    cisplatin (Lelieveld et al., 1984). A 36-53% decrease in lymphocyte
    and granulocyte counts was observed in mouse bone marrow after
    intra-peritoneal treatment with 5 mg cisplatin/kg (Bodenner et al.,
    1986).

         Cisplatin administered intraperitoneally (6 mg/kg) has been
    shown to affect gastric emptying in rats. There was a large increase
    in the weight of the stomach due to retained food (Whitehouse &
    Garrett, 1984).

         In dogs, cisplatin given intravenously as a dose of 2 mg/kg
    resulted in a complete interruption of interdigestive myoelectric
    activity of the gastric antrum, duodenum, and jejunum (Chey et al.,
    1988).

         Ototoxicity has been demonstrated in guinea-pigs. A cisplatin
    dose of 1.5 mg/kg administered intraperitoneally once a day caused
    hearing loss beginning at about the ninth day of administration
    (Hoeve et al., 1987).

    7.8  Factors modifying toxicity

         Physiological levels of selenium administered simultaneously
    with food to mice markedly depressed the acute toxicity of some
    platinum salts by forming inert complexes of high relative molecular
    mass in the presence of protein (Imura, 1986).

    8.  EFFECTS ON HUMANS

    8.1  General population exposure

    8.1.1  Acute toxicity - poisoning

         Except for one case of poisoning in 1896 (Hardman & Wright,
    1896), no acute poisoning cases have been reported.

    8.1.2  Effects of exposure to platinum emitted from automobile
           catalysts

         An immunological study conducted by Cleare (1977b) addressed
    the question of whether the emitted platinum is allergenic. He
    investigated the response of individuals, who were highly sensitive
    to platinum salt (skin test positive at low platinum salt
    concentrations), to extracts of particulate exhaust samples. The
    total platinum content at the highest concentration was more than 5
    µg/ml, which would normally be sufficient to elicit a response. Five
    extracts tested on three people, using the skin prick test, did not
    elicit a positive response.

    8.2  Occupational exposure

         The occupational hazards of platinum are principally confined
    to some halogenated complex platinum salts (Rosner & Merget, 1990).

    8.2.1  Case reports and cross-sectional studies

         A report of health problems arising from occupational exposure
    to platinum was produced by Karasek & Karasek (1911). They studied
    workers in photographic studios in Chicago handling photographic
    paper treated with complex platinum salts. The symptoms observed in
    eight workers were pronounced irritation of the nose and throat
    causing violent sneezing and coughing, together with difficulties in
    breathing.

         Hunter et al. (1945) conducted environmental and clinical
    studies on workers in four British platinum refineries. Out of 91
    workers exposed to complex salts of platinum, 52 showed symptoms
    starting with repeated sneezing and rhinorrhoea, followed by
    tightness of the chest, shortness of breath, cyanosis, and wheezing.
    Scaly erythematous dermatitis of hands and forearms, sometimes also
    affecting the face and neck, and urticaria were observed in 13
    workers. The respiratory tract symptoms persisted during working
    hours and for about one hour after leaving the factory. The latency
    period from the first contact with platinum to the occurrence of the
    first symptoms varied from a few months to six years. Once skin and
    respiratory tract sensitization was established, symptoms tended to
    become worse as long as the workers were exposed to platinum salts.

         In the USA, Roberts (1951) studied 21 employees of a platinum
    refinery for five years. All workers showed some form of platinum-
    related disease for which Roberts (1951) introduced the term
    "platinosis". According to his classification of this occupational
    disease, 40% of the employees did not have typical symptoms but
    exhibited the same inflammatory changes in the conjunctivae and the
    mucous membranes of the upper respiratory tract as were seen in the
    60% of the workers with definite symptoms. 

         These observations have been confirmed by other investigators.
    The term "platinosis" is no longer used, as it implies a chronic
    fibrosing lung disease. This had been assumed by Roberts (1951) but
    has not been reported elsewhere. The terms "platinum salt allergy"
    (Schultze-Werninghaus et al., 1978), "platinum salt sensitivity"
    (Linnett, 1987), "allergy to platinum compounds containing reactive
    halogen ligands" (Hughes, 1980) and "platinum salt hypersensitivity"
    (PSH) have been used, with the latter being preferred.

         The symptoms typical of platinum salt sensitization (Roshchin
    et al., 1979; Health and Safety Executive, 1983; Brooks et al.,
    1990) include watering of the eyes, sneezing, tightness of the
    chest, wheezing, breathlessness, coughing, eczematous and urticarial
    skin lesions, signs of mucous membrane inflammation.

         In earlier studies, the prevalence of allergic symptoms due to
    platinum salt exposure was as high as 80% (Table 16) although this
    was not consistently confirmed by skin testing. Estimated workplace
    exposure concentrations ranged from 0.9 to 1700 µg Pt/m3 (Hunter
    et al., 1945). However, due to analytical deficiencies, these data
    do not allow the quantification of these exposure situations. It can
    be assumed that occupational exposure is much lower today due to
    improved engineering control and occupational exposure limits.
    Airborne dust analyses in a platinum refinery revealed levels
    between 0.08 and 0.1 µg/m3 in the separation department; in other
    areas the measurements were all below 0.05 µg/m3 (Bolm-Audorff et
    al., 1988) or below 0.08 µg/m3 (Merget et al., 1988). Work-related
    symptoms were reported in 8 to 23% of workers exposed to these
    concentrations (Table 16). The risk of developing platinum salt
    hypersensitivity seems to be correlated with the intensity of
    exposure. In the surveys of Bolm-Audorff et al. (1988) and Merget et
    al. (1988), the highest rates of prevalence occurred in the groups
    exposed to the highest concentration.

    Table 16.  Prevalence of symptoms and positive skin tests
               in refinery workers exposed to platinum salts
                                                                      

    Total      Workers          Prevalence of  Reference
    workersa   with symptomsb   symptoms (%)c
                                                                      

     91 (16)   52 (4)           57 (25)        Hunter et al. (1945)

     20 (19)   12 (8)           60 (42)        Roberts (1951)

     15 (nd)   12 (nd)          80 (nd)        Massmann & Opitz (1954)

     51 (nd)   35 (nd)          69 (nd)        Hebert (1966)

    107 (107)  31d 47e (15)     29d 44e (14)   Biagini et al. (1985);
                                               Brooks et al. (1990)

     65 (64)   15 (12)          23 (19)        Bolm-Audorff et al.
                                               (1988)

     24 (20)    2 (4)            8 (20)        Merget et al. (1988)
                                                                      

    a Values in parentheses are numbers of skin-tested workers
    b Values in parentheses are numbers of workers with a positive
      skin test
    c Values in parentheses give the prevalence of positive skin
      tests as a percentage of skin-tested workers
    d Workers with upper respiratory tract symptoms
    e Workers with lower respiratory tract symptoms
      nd = not determined

    8.2.2  Allergenicity of platinum and platinum
    compounds

         Metallic platinum seems to be non-allergenic. With the
    exception of a single reported case of alleged contact dermatitis
    from a "platinum" ring (Sheard, 1955), no allergic reactions have
    been reported.

         Halogenated platinum salts are among the most potent
    sensitizers. The compounds mainly responsible for platinum
    sensitization are hexachloroplatinic acid, H2[PtCl6], and the
    chlorinated salts such as ammonium hexachloroplatinate,
    (NH4)2[PtCl6], potassium tetrachloroplatinate, K2[PtCl4],
    potassium hexachloroplatinate, K2[PtCl6], and sodium
    tetrachloroplatinate, Na2[PtCl4]. Cleare et al. (1976)
    investigated the allergenic potency of platinum complexes by means
    of skin prick tests on platinum refinery workers who were known to

    be sensitive to hexachloroplatinate. Their results suggest that
    platinum allergy is confined to a small group of charged compounds
    that contain reactive ligand systems, the most effective of which
    are chloride ligands. The allergic response generally increases with
    increasing number of chlorine atoms, as demonstrated by the
    following sequence of potency:

    (NH4)2[PtCl6] approx. (NH4)2[PtCl4] >
    Cs2[Pt(NO2)Cl3] > Cs2[Pt(NO2)2Cl2] >
    Cs2[Pt(NO2)3Cl]

         Ionic platinum compounds containing bromide or iodide are also
    allergenic, but are less effective.

         Non-halogenated complexes such as [Pt{(NH2)2CS}4]Cl2,
    K2[Pt(NO2)4], and [Pt(NH3)4]Cl2, and neutral complexes
    such as cisplatin,  cis-[PtCl2(NH3)2], are not allergenic,
    probably because they do not react with proteins to form a complete
    antigen. Anaphylactic shock reactions observed after the intravenous
    administration of relatively high doses of cisplatin (Khan et al.,
    1975; Von Hoff et al., 1979) were probably caused by contamination
    with the potent hexa- or tetrachloroplatinate (Pepys, 1983).

    8.2.3  Clinical manifestations

         The latency period from the first exposure to platinum salts to
    the occurrence of the first symptoms usually varies between three
    months and three years (Parrot et al., 1969; Schultze-Werninghaus et
    al., 1978; Ruff et al., 1979; Biagini et al., 1985), but is
    sometimes only a few weeks (Roberts, 1951; Hughes, 1980; Merget et
    al., 1988). 

         The dermatitis observed in the past (Roberts, 1951) is believed
    to have been mainly of a primary irritant nature following exposure
    to strong acids and alkalis. True contact dermatitis (i.e. allergic)
    is extremely rare. However, contact urticaria is seen in sensitized
    people following splashes with platinum salts and in some instances
    this is the first indication of sensitization (Hughes, 1980).

         The symptoms usually worsen with increasing duration of
    exposure but generally disappear when the subject is removed from
    exposure. The latter was shown by the follow-up study carried out on
    platinum refinery workers who had to cease work with platinum salts
    because of sensitization (Newman-Taylor, 1981). This study found no
    evidence of long-term effects when workers giving a positive skin
    prick test and showing symptoms of platinum sensitization were
    removed immediately from contact with platinum salts. However,
    Schultze-Werninghaus et al. (1989) reported that after long duration
    exposure following sensitization individuals may never become
    completely free of symptoms. Similarly, Biagini et al. (1985)
    demonstrated the existence of positive platinum skin tests at very

    low concentrations in workers who had been free of occupational
    platinum exposure for periods of up to four years.

    8.2.4  Immunological mechanism and diagnosis

         The clinical manifestations of soluble platinum salt allergy
    reflect a true allergic response based on the following clinical
    criteria (Hughes, 1980; Biagini et al., 1985, 1986; Merget et al.,
    1988; Schultze-Werninghaus et al., 1989):

    *    the appearance of sensitivity is preceded by a symptomless
         exposure;

    *    not all exposed individuals become sensitized;

    *    the affected individuals become increasingly sensitive to
         platinum and react even at very low levels of exposure;

    *    negative prick test results are obtained in atopic and non-
         atopic controls.

         The mechanism of platinum salt allergy appears to be a Type I
    (IgE mediated) response. The possibility of the formation of IgE
    antibodies to platinum chloride complexes in sensitized individuals
    has been assumed on the grounds of allergy and serological tests. It
    is believed that platinum salts of low relative molecular mass act
    as haptens combining with serum proteins to form the complete
    antigen. However, the actual immunological mechanism has not yet
    been defined (Zachgo et al., 1985).

         It has been demonstrated that platinum(II) reacts with the
    sulfur atoms in the six methionine groups in human serum albumin
    (HSA) and that methionine 123 is the primary binding site
    (Grootveld, 1985).

         Skin prick tests with freshly prepared solutions of soluble
    platinum complexes appear to provide reproducible, reliable,
    reasonably sensitive, and highly specific biological monitors of
    allergenicity (Cleare et al., 1976; Dally et al., 1980). The
    compounds used for routine screening of exposed workers are
    (NH4)2[PtCl6], Na2[PtCl6], and Na2[PtCl4]. After
    sensitization due to previous exposure, prick testing with
    concentrations of the platinum compound in the range of 10-3 to
    10-9 g/ml will produce immediate weal and flare reactions (Pepys
    et al., 1972; Pickering, 1972; Hughes, 1980; Gallagher et al., 1982;
    Biagini et al., 1985; Boggs, 1985; Jacobs, 1987; Linnett, 1987;
    Murdoch & Pepys, 1987; Schultze-Werninghaus et al., 1989). At these
    concentrations, nonspecific skin reactions were not found in atopic
    or non-atopic controls (Pepys et al., 1972; Murdoch & Pepys, 1987;
    Merget et al., 1988).

         Passive transfer of immediate reactivity to intracutaneous
    tests in humans was demonstrated in the Prausnitz-Küstner test by
    Freedman & Krupey (1968). Schultze-Werninghaus et al. (1978)
    observed positive reactions in passive cutaneous anaphylaxis (PCA)
    in monkeys with serum from a platinum refinery worker. Similar tests
    were performed by Pepys et al. (1979) and Biagini et al., (1985).
    The results, however, were inconsistent, because positive as well as
    negative Prausnitz-Küstner prick test or PCA reactions were elicited
    in human recipients or in monkeys, respectively. Parish (1970) also
    demonstrated the presence of heat-stable IgG antibodies by passive
    cutaneous anaphylaxis on monkey skin. These results were confirmed
    by Biagini et al. (1985).

         The sensitivity and reliability of the skin prick test has not
    been achieved in any  in vitro test available. In enzyme
    immunoassays (Zachgo et al., 1985; Merget et al., 1988) and in the
    radioallergosorbent test (RAST) (Cromwell et al., 1979; Pepys et
    al., 1979) IgE antibodies specific to platinum chloride complexes
    were found. Although a good correlation with the results of prick
    tests was reported (Cromwell et al., 1979), their practical
    application for screening purposes was questioned because of the
    lack of specificity (Boggs, 1985; Jacobs, 1987; Merget et al.,
    1988). This was shown in a cross-sectional survey of platinum
    refinery workers (Merget et al., 1988). Higher total serum IgE and
    hexachloroplatinate-specific IgE levels in subjects with work-
    related symptoms were noted. However, not all the individuals
    allergic to platinum salt and some of the controls showed binding in
    RAST. Similar effects were seen with  in vitro histamine release
    from basophils, which was relatively high in skin-test positive
    workers but even higher in the atopic control group. Histamine
    release with anti-IgE showed a similar pattern, indicating identical
    binding sites of hexachloroplatinate and anti-IgE on the surface of
    cutaneous mast cells and basophils.

         Biagini et al. (1985) also found significantly higher mean
    total serum IgE levels in platinum refinery workers. However, good
    correlation between the RAST data and the skin test results was
    seen. Of the workers with positive skin tests, 95% (20/22) showed
    higher RAST binding than a control group, whereas only 8.5% (8/94)
    of those with negative skin tests demonstrated positive RAST
    results. 

         Since refinery workers are exposed to more than one platinum-
    group metal salt, the question of cross-reactivity was investigated
    by passive cutaneous anaphylaxis (PCA) tests. First results
    indicated that platinum (Na2[PtCl6] and (NH4)2[PtCl6]) and
    palladium (Na2[PdCl6]) appear to be equally effective as
    eliciting agents. Five-fold concentrated sera from platinum refinery
    workers produced positive PCA results in monkeys (Biagini et al.,
    1982). No  in situ reactions due to palladium salts were reported.
    There was only limited cross-reactivity between platinum and

    palladium salts in both skin test and RAST. Reactions to the
    platinum-group metals other than platinum were only seen in
    individuals sensitive to platinum salts (Murdoch et al., 1986;
    Murdoch & Pepys, 1987).

         Instillation in the nose of concentrations of 10-3 to 10-9
    g per ml has been used in the past as another method of detecting
    platinum salt sensitivity. A nasal reaction was considered positive
    if itching, sneezing, nasal obstruction or discharge occurred singly
    or in combination within 15 min of the challenge (Pepys et al.,
    1972).

         Inhalation tests with a mixture of ammonium hexachloroplatinate
    and lactose dust gave immediate asthmatic reactions in sensitized
    individuals and in one case a late asthmatic reaction occurred
    (Pepys et al., 1972).

         Merget et al. (1990) reported three cases of platinum refinery
    workers with negative skin tests who showed non-specific hyper-
    reactivity and a clearly positive immediate reaction in the
    bronchial provocation test.

    8.2.5  Predisposing factors

         Dally et al. (1980) conducted a retrospective cohort analysis
    in a group of 86 platinum workers entering a United Kingdom refinery
    in 1973-1974. It was found that significantly more atopics left
    employment, but this was apparently irrespective of the development
    of platinum salt allergy. The incidence of the disease did not
    differ significantly between the atopics (14/32 = 44%) and non-
    atopics (21/54 = 39%), although Burge et al. (1979) demonstrated
    that the atopics were sensitized more quickly. Thus, the increased
    leaving rate of atopics cannot be regarded as proof for the atopic
    status being a true predisposing factor, as suggested by Linnett
    (1987). It may, at most, be considered a trend.

         Merget et al. (1988) examined 27 refinery workers and found no
    evidence to support tobacco smoking as a predisposing factor.
    However, Linnett (1987) found a significant association between
    smoking and the incidence of positive skin test results in life
    table studies of 134 refinery workers. Also, in a longitudinal
    cohort study on 91 platinum refinery workers (86 males, 5 females)
    in the United Kingdom who started work in 1973-1974 and were
    followed up until 1980, the risk of a positive skin test result was
    found to be 4-5 times higher in smokers than in non-smokers
    (Venables et al., 1989). Age, varying from 15-54 years in the
    cohort, was a definite confounding factor. After taking account of
    age, the risk of leaving refinery work was only 1.75 times greater
    in smokers than in non-smokers. The risk from atopy was not
    significant after taking smoking into consideration. 

         Brooks et al. (1990) further studied 107 current and 29
    medically terminated workers, first described by Biagini (1985),
    using platinum skin testing and cold air challenge for evaluation of
    pulmonary hypersensitivity. Of these workers (74 current and 12
    terminated workers), 63% underwent repeat platinum skin testing one
    year later. Among current workers, there was a conversion to
    positive platinum skin tests in five employees (with three of these
    conversions occurring in workers who had positive cold air challenge
    tests a year earlier). Thus, positive cold air challenge (airway
    hyperactivity) appears to have value for predicting conversion to
    positive skin test status with continued occupational exposure.

    8.3  Side effects of cisplatina

         The therapeutic use of cisplatin is often complicated by the
    occurrence of side effects. Prominent among these are
    nephrotoxicity, severe nausea and vomiting, myelotoxicity (bone
    marrow suppression), and ototoxicity.

         The most important toxic effect of cisplatin occurs in the
    kidney, eventually becoming irreversible during continued treatment.
    For instance, Lippman et al. (1973) found an approximately 50%
    reduction in renal function in each of 16 patients after treatment
    with total doses of 3.0-7.0 mg/kg body weight. Degeneration and
    necrosis of the proximal convoluted tubules, dilation of distal
    tubules, and glomerular abnormalities (elevation of the blood urea
    nitrogen and serum creatine levels, decreased creatine clearance)
    have been reported (Swierenga et al., 1987). A significant
    protection of renal function can be obtained by forced hydration,
    which flushes the drug through the kidney rapidly (Merrin, 1976).
    The simultaneous intravenous administration of mannitol can
    contribute to the prevention of cisplatin nephrotoxicity (Fillastre
    & Raguenez-Viotte, 1989).

         Gastrointestinal toxicity consists mainly of nausea and
    vomiting lasting from 4 to 6 h and, occasionally in some sensitive
    patients, anorexia for up to one week (Hill et al., 1975).

         Ototoxicity is another serious side-effect, consisting of
    tinnitus with or without clinical loss of hearing. Early in its
    course it is almost exclusively associated with high-range hearing
    loss in the 4000-8000 Hz range (Von Hoff et al., 1979).

         Cisplatin can also cause peripheral neuropathy described as
    sensory, affecting primarily large fibres (Mollman et al., 1988).

                      

    a    See footnote in section 1.2.

         Single cases of allergic reactions, angioneurotic oedema, rash,
    asthma (Von Hoff et al., 1979), cardiac arrest (Vogl et al., 1980),
    gingival discolouration (Ettinger & Freeman, 1979), and tetany due
    to hypocalcaemia and hypomagnesaemia (Hayes et al., 1979) have all
    been reported.

         There are less toxic analogues, for example,  cis-
    diammine-1,1-cyclobutanedicarboxylato platinum(II) (Carboplatin,
    JM8) and  cis-dichloro- trans-dihydroxybisisopropylamine
    platinum(IV) (JM9). These cause less kidney damage, nausea, and
    vomiting. However, these analogues affect bone marrow and, in
    addition to the negative effects of cisplatin, may inhibit the
    formation of white cells, red cells, and blood platelets (Schacter &
    Carter, 1986; Bradford, 1988).

    8.4  Carcinogenicity

         No data are available to assess the carcinogenic risk of
    platinum or its salts to humans. With respect to cisplatin, IARC
    (1987b) considered the evidence for carcinogenicity for humans to be
    inadequate (see chapter 13). 

    9.  EFFECTS ON OTHER ORGANISMS IN THE LABORATORY AND FIELD

    9.1  Microorganisms

         Simple complexes of platinum have bactericidal effects. In
    general, charged complexes in solutions, e.g., (NH4)2[PtCl6]
    above a concentration of 1 mg/litre, are lethal for bacteria.
    Neutral complexes are bactericidal only at considerably higher
    concentrations (> 38 µmol per litre) (Rosenberg et al., 1967;
    Shimazu & Rosenberg, 1973).

         Rosenberg et al. (1965) reported the discovery of a unique
    property of some simple platinum-group metal complexes. When culture
    medium was subjected to an alternating current using platinum
    electrodes, bacterial cell division was inhibited. The spent medium
    itself was bactericidal. Detailed analysis revealed that the active
    agent was the cis isomer of [PtCl2(NH3)2], i.e. cisplatin. It
    was shown that such neutral platinum complexes, diluted in growth
    media, selectively inhibit cell division without reducing the cell
    growth of a variety of gram-positive and especially of gram-negative
    bacteria. As a result the bacterial rods are forced to form long
    filaments. This effect has been studied most intensively on
     Escherichia coli with cisplatin. In this case filamentation is
    reversed as soon as the bacterial filaments are transferred to a
    fresh medium free of the drug (Rosenberg et al., 1967).

         Hoffmann (1988) studied the effects of cisplatin and PtCl4 on
    the  in vitro metabolism of the yeast  Saccharomyces cerevisiae.
    Both compounds strongly inhibited DNA, RNA, and ribosome synthesis
    in the mmol/litre range. The IC50 (median inhibitory
    concentration) for the inhibition of DNA synthesis, for instance,
    was 0.42 mmol/litre (126 mg/litre) for cisplatin and 0.2 mmol/litre
    (67 mg per litre) for PtCl4.

    9.2  Aquatic organisms

    9.2.1  Plants

         Barnes & Talbert (1984) studied the influence of
    hexachloroplatinic acid (250, 500, and 750 µg/litre) on the growth
    of the green alga  Euglena gracilis using a laboratory "microcosm".
    The growth recorded over 32 days was relatively slow, indicating
    that the experiments were conducted under low nutrient conditions,
    although these were not reported by the authors. For example, the
    doubling time of the control culture was about 9 days. Although no
    precise data were given, H2[PtCl6]reduced growth rate and yield
    after 32 days in a dose-dependent manner.

         After cisplatin was applied to the water hyacinth  Eichhornia
     crassipes at 2.5 mg/litre, chlorosis was evident and the plants
    were stunted. At the 10-mg/litre level, some plant leaves were

    necrotic and chlorotic, and the roots were darkened and stunted. The
    most prominent symptom was the appearance of reddish-brown streaks
    on the leaves. These were particularly noticeable on young leaves
    and on the leaves of daughter plants (Farago & Parsons, 1985).

    9.2.2  Animals

         Biesinger & Christensen (1972), using Lake Superior water as a
    medium, studied the effects of various metals on the survival,
    growth, reproduction, and metabolism of the invertebrate  Daphnia
     magna. Chronic (3-week) exposure to hexachloroplatinic acid,
    H2[PtCl6], resulted in an LC50 value of 520 µg Pt/litre (range
    437-619 µg per litre). Biochemical measurements and reproductivity
    were much more sensitive parameters than growth. A dose of 62
    µg/litre caused a 12% reduction in weight gain, 13% reduction in
    total protein, and 20% decrease in glutamic-oxalacetic transaminase
    activity. At concentrations of 14 and 82 µg/litre, reproduction,
    measured as total number of young, was impaired by 16 and 50%,
    respectively.

         Ferreira & Wolke (1979) investigated the effects of short-term
    exposure to tetrachloroplatinic acid, H2[PtCl4], on the coho
    salmon  Oncorhynchus kisutch at 8.5°C and a water hardness of about
    56 mg CaCO3/litre. In the static bioassay, 24-, 48-, and 96-h
    LC50 values of 15.5, 5.2, and 2.5 mg Pt/litre, respectively, were
    found. General swimming activity and opercular movement started to
    be affected at 0.3 mg/litre. Lesions in the gills and the olfactory
    organ were also noted at 0.3 mg/litre or more. Concentrations of
    0.03 and 0.1 mg/litre had no effect. 

    9.3  Terrestrial organisms

         A few studies have examined the effects of platinum on plants.
    All were conducted with soluble platinum chlorides.

         Hamner (1942) investigated the effect of hexachloroplatinic
    acid, H2[PtCl6].6H2O, on the growth of beans and tomato plants
    grown in sand culture. At concentrations of 3 x 10-5 to 15 x
    10-5 mol/kg (5.9-29.3 mg/kg), growth was inhibited and the plants
    showed smaller leaf areas, higher osmotic pressure, and lower
    transpiration rates. They also resisted wilting longer than the
    controls and were less succulent.

         Tso et al. (1973) reported that platinum increased the nicotine
    content of tobacco plants.

         In a study by Pallas & Jones (1978) on the uptake of platinum
    by nine horticultural crops (see section 4.1), effects on growth
    were observed. Radish  (Raphanus sativus), cauliflower ( Brassica
     oleracea cv. Snowball), snapbean  (Phaseolus vulgaris), sweet
    corn  (Zea mays), pea  (Pisum sativum), tomato  (Lycopersicon

     esculentum), bell pepper  (Capsicum annuum), broccoli ( Brassica
     oleraceaw cv. Crusader), and turnips  (Brassica rapa) were grown
    in hydroponic solution at 25/20 °C, 60/90% relative humidity, and
    320/400 µl CO2/litre air for 14/10 h photo- and nyctoperiods,
    respectively. When the seedlings reached an early maturity stage,
    such as flowering in the case of peas, snapbeans, cauliflower,
    tomato, and broccoli, root expansion in the case of turnip and
    radish, and considerable leafiness in the case of corn, platinum
    tetrachloride, PtCl4, was added to fresh nutrient solution to give
    concentrations of 0.057, 0.57, and 5.7 mg Pt/litre. After a 7-day
    treatment, roots and tops were harvested and dried at 80 °C. As
    shown in Table 17, dry weights were significantly reduced in tomato,
    bell pepper, and turnip tops, and in radish roots at the highest
    platinum concentration. At this level, the buds and immature leaves
    of most species became chlorotic. In some of the species the low
    levels of PtCl4 had a stimulatory effect on growth. In addition,
    transpiration was suppressed at the highest platinum concentration,
    probably due to increased stomatal resistance. Photosynthesis was
    also apparently reduced, consistent with the observed growth
    depression. On the other hand, the stimulation of transpiration and
    growth observed at the two lower concentrations, as compared to the
    control plants, explains the stimulated growth.

         A stimulation of growth was also observed in seedlings of
     Setaria verticillata (L. P. Beauv) treated with a low level of
    platinum (0.5 mg Pt/litre) administered as potassium
    tetrachloroplatinate, K2[PtCl4] (Farago & Parsons, 1986). This
    South African grass species was grown in nutrient solution, and
    after two weeks, the length of the longest roots had increased by
    65%. At the higher concentration applied, i.e. 2.5 mg Pt/litre,
    phytotoxic effects were seen in the form of stunted root growth,
    i.e. root length about 75% compared to control, and chlorosis of the
    leaves. As platinum was shown to accumulate in the roots and, at the
    higher level, also in the shoots (see section 4.1), the potential
    use of this grass species, either for the colonisation of flotation
    tailings (a waste product from the concentration of precious metal
    ores) or for the removal of platinum from the tailings, was
    investigated. However, due to a substantial lack of essential
    macronutrients in the tailings, growth of  S. verticillata was very
    poor. No platinum was detected in the plants. 


    
    Table 17.  Dry weight (g) of tops and roots after a 7-day treatment with platinum tetrachloridea
                                                                                                                               
    Pt levels    Bean         Broccoli     Cauliflower  Corn         Pea          Pepper       Radish       Tomato       Turnip
    (mg/litre)
                                                                                                                               

    Tops

    0            5.39         24.15        41.53        33.15        6.13         23.44        1.30         32.22        19.33
    0.057        5.79         19.50        46.30        35.05        7.21         18.50        1.33         37.97        20.78
    0.57         4.98         15.53        43.44        35.21        6.87         11.90        1.23         40.62        17.55
    5.7          4.01         18.24        40.96        25.80        5.22         14.18        0.91         28.18         9.55

    Roots

    0            3.11          5.45         6.09         9.96        2.86          4.82        2.17          5.96         4.80
    0.057        2.80          4.77         6.56        10.96        2.60          4.82        2.24          7.64         5.51
    0.57         2.70          4.02         5.68        10.73        2.81          3.32        2.17          6.68         4.91
    5.7          2.31          5.36         6.57         8.36        2.20          4.90        1.19          6.00         3.82
                                                                                                                               

    a Adapted from:  Pallas & Jones (1978)


    
    10.  EVALUATION OF HUMAN HEALTH RISKS AND EFFECTS ON THE ENVIRONMENT

    10.1  Evaluation of human health risks

    10.1.1  General population exposure

    10.1.1.1  Exposure

         There is lack of data on the actual exposure situation in
    countries where automobile exhaust gas catalysts have been
    introduced. Therefore, estimates of possible ambient air
    concentrations of platinum are based on emission data and dispersion
    models.

         Loss of platinum from the pellet-type catalyst, which has never
    been used in Europe and is no longer used on new cars in the USA,
    was found to be up to approximately 2 µg per km travelled. Of the
    particles emitted, 80% had particle diameters greater than 125 µm.
    Since no determination of the particle size distribution was
    performed, the percentage of the respirable portion is not known.
    About 10% of the platinum emission was found to be water-soluble. In
    general, these data are based on single or only a few measurements
    and have not been validated.

         Recent emission data from the new-generation monolith-type
    catalyst indicate that the emission of platinum is lower by a factor
    of 100-1000 than that of the pelleted catalyst. Emissions were on
    average between 2 and 39 ng per km travelled at simulated speeds of
    between 60 and 140 km/h. The mean aerodynamic diameter of the
    particles emitted was 4-9 µm. These data have been validated by
    repeated measurements using two monolith-type catalysts. However,
    other types of catalysts should be investigated to substantiate
    these emission data. In addition, because of the inadequate data
    base, the speciation is not known exactly, although there is an
    indication that the platinum emitted is in the metallic form or
    consists of surface-oxidized particles.

         The striking difference between the emission pattern of the two
    catalyst types may be attributable to their basically different
    design.

         The possible ambient air concentrations of platinum, estimated
    on the basis of these emission data and dispersion models, range
    between 0.005 and 9 ng/m3 for the pellet-type catalyst and between
    0.05 and 90 pg/m3 for the monolith-type catalyst. These
    concentrations are lower by factors of 1 x 105 to 2 x 108 and 1
    x 107 to 2 x 1010, respectively, than the occupational exposure
    limit of 1 mg/m3 established by some countries for platinum metal
    as total inhalable dust.

         Assuming that 10% of the platinum emission from pelleted
    catalysts contains potentially allergenic soluble platinum
    compounds, the safety factor to the occupational exposure limit for
    soluble platinum salts (2 µg/m3) would be 2 x 103 to 4 x 106.
    However, there is no evidence that the soluble fraction of the
    platinum emissions is allergenic.

    10.1.1.2  Health effects

         Since platinum is most probably not emitted in the form of
    halogenated soluble salts, the sensitization risk from car catalyst
    platinum is very low. There is no substantial evidence of any
    biological effects from automobile platinum emissions. There are
    also no data to substantiate the possibility that very finely
    dispersed metallic platinum could be biologically active upon
    inhalation.

    10.1.2  Occupational groups

    10.1.2.1  Exposure

         Occupational exposure to platinum occurs in various workplaces
    including mining. However, only exposure to certain halogenated
    soluble salts through inhalation of dusts and skin contact is of
    toxicological relevance. These compounds are mainly encountered
    during platinum refining and catalyst manufacture.

         There are only limited data to quantify workplace exposure. An
    occupational exposure limit of 2 µg/m3 for soluble platinum salts
    has been adopted by several countries. There are again limited data
    suggesting that the exposure limit may sometimes be exceeded in
    practice. Before the allergenic potential of soluble platinum salts
    was established, workplace concentrations exceeding the present
    occupational exposure limit by up to one order of magnitude were
    found. However, it should be noted that analytical accuracy was not
    very reliable.

         Occupational exposure to the anti-tumour agents cisplatin and
    its analogues during manufacturing and use is of importance.
    However, a review and an evaluation of the health effects of these
    compounds are beyond the scope of this document as these substances
    are used primarily as therapeutic agents. In addition, their
    toxicological properties are exceptional compared to other platinum
    compounds.

    10.1.2.2  Health effects

         The acute toxicity of platinum salts for animals is low and
    depends on their solubility. Insoluble compounds such at PtCl2 and
    PtO2 have an extremely low acute toxicity and this would also be
    expected for metallic platinum.

         By far the most significant health effect from exposure to
    soluble platinum salts is sensitization.

         Some halogenated platinum salts are highly allergenic in
    humans. The compounds mainly responsible for platinum salt
    hypersensitivity (PSH) are hexachloroplatinic acid, H2[PtCl6],
    ammonium hexachloroplatinate, (NH4)2[PtCl6], and potassium
    tetra- and hexachloroplatinate, K2[PtCl4] and K2[PtCl6].
    Except for one unsubstantiated case of alleged contact dermatitis in
    connection with a "platinum" ring, there is no evidence for
    sensitization from metallic platinum.

         The mechanism of platinum salt allergy appears to be a type I
    (IgE mediated) response as established through  in vivo and  in
     vitro tests. There is evidence that platinum salts of low relative
    molecular mass act as haptens combining with serum proteins to form
    the complete antigen. 

         The signs and symptoms of allergic reactions due to platinum
    salt exposure include urticaria, itching of skin, eyes, and nose,
    watering of the eyes, sneezing, rhinorrhoea, coughing, wheezing, and
    dyspnoea. The latent period from the first contact with platinum
    salts to the occurrence of the first symptoms varies from a few
    weeks to several years. Once sensitivity is established, even minute
    amounts can elicit immediate and/or late onset of signs and
    symptoms. The symptoms persist during exposure and usually disappear
    on removal from exposure. However, if long-duration exposure occurs
    after sensitization, individuals may never become completely free of
    symptoms. 

         The diagnosis of platinum salt hypersensitivity is usually
    based on a history of work-related symptoms and a positive platinum
    skin prick test. The combination of these has been shown to be
    reasonably sensitive and specific for the diagnosis of platinum salt
    hypersensitivity.  In vitro tests appear to be useful for
    epidemiological evaluation, but lack specificity for individual
    dignosis. Symptoms usually worsen as long as the workers remain in
    the contaminated environment.

         There is good evidence for the association of smoking or
    pulmonary hyper-reactivity and sensitization. The evidence for atopy
    as a predisposing factor is equivocal. This may be due to bias from
    pre-employment screening. 

         Despite the occupational exposure limit of 2 µg/m3, wthe
    prevalence of positive skin prick tests was found to be between 14
    and 20% in workers exposed to levels of between < 0.05 and 0.1 µg
    Pt/m3. Since these data were derived from area samples, short
    sharp exposures above this limit could also have been responsible
    for the sensitization observed. The present occupational exposure
    limit might not be sufficient to prevent platinum salt

    hypersensitization, although it is difficult to reach a firm
    conclusion because of the lack of adequate data. To minimize the
    risk, workplace exposure should be as low as practicable.

    10.2  Evaluation of effects on the environment

         Compared to that of other metals, the total production of
    platinum is low, amounting annually to approximately 100 tonnes.
    There are no data on platinum emissions during production. However,
    because of the high value of platinum, losses are assumed to be low.
    During the use of platinum-containing catalysts, platinum can escape
    into the environment in small amounts, depending on the type of
    catalyst. Of the stationary catalysts used in industry, only those
    used for ammonia oxidation emit a quantifiable amount of platinum.
    This is present in the nitric acid produced, which may be used for
    conversion to nitrate fertilizers. In the USA the annual loss of
    platinum is estimated to be around 200 kg. Since part of this amount
    is distributed fairly uniformly all over the country, a rise in the
    background level of platinum in soil would probably not be detected
    because of the very low likely concentration.

         Platinum emission from automobile catalysts also contributes to
    a diffuse contamination of the environment. On the basis of the
    emission data derived from the new-generation monolithic-type
    catalysts, total platinum loss from mobile sources would be less
    than that from nitric acid production. For example, at an assumed
    average emission rate of 20 ng platinum per km travelled, 100
    million cars equipped with catalytic converters would emit
    approximately 20 kg per year for an average kilometreage of 10 000
    km per year and per car. This implies that the contamination of the
    environment with platinum is very low or negligible.

         In comparison, the total loss of platinum from the older design
    pellet-type catalytic converter would have been higher by a factor
    of 100, i.e. 2000 kg per year, most of the platinum being emitted in
    the form of larger particles that would be deposited close to the
    roads. This would also explain platinum levels of up to 0.7 mg/kg
    dry weight found in roadside dust samples near major free-ways in
    the USA.

         There is limited evidence that most of the platinum emitted is
    in the metallic form, and thus will probably not be bioavailable in
    the soil. Biomethylation of soluble platinum(IV) compounds has been
    demonstrated in the presence of platinum(II). However, from these
    laboratory data produced under abiotic conditions, it is not
    possible to conclude that microorganisms in the environment are able
    to biomethylate platinum complexes.

         Analysis of Lake Michigan sediments led to the conclusion that
    platinum has been deposited over the past 50 years at a constant
    rate, while lead concentrations have markedly increased. However,

    since the car catalyst was introduced in the USA only a few years
    before these measurements were performed, these data are
    insufficient for firm conclusions to be drawn.

         No data on the effects of platinum compounds on environmental
    microorganisms are available. However, from the bactericidal
    activity of platinum complexes it can be assumed that these
    compounds could influence, at appropriate concentrations, microbial
    communities in the environment or, for example, in sewage treatment
    plants. 

         Aquatic and terrestrial plants are affected by platinum
    compounds at concentrations in the mg/litre or mg/kg range. Although
    there is a lack of definite data on platinum levels in the
    environment, it is probable that platinum and platinum compounds do
    not present a risk to naturally occurring organisms at the low
    concentrations expected to occur in the environment.

    11.  RECOMMENDATIONS FOR PROTECTION OF HUMAN HEALTH AND THE
         ENVIRONMENT

    11.1  Pre-employment screening and medical evaluations

         To screen workers at risk of developing platinum salt
    hypersensitivity (PSH), the following should be carried out for all
    employees potentially exposed to soluble platinum salts:

    *    a questionnaire with particular attention being paid to
         previous respiratory disease, allergy, smoking habits, and
         employment history;

    *    a complete medical examination, including lung function tests
         (spirometry, flow volume), tests of bronchial reactivity (cold
         air, methacholine, histamine, etc.), and an immunological
         profile including total serum IgE;

    *    a skin prick test for atopic status using a battery of antigens
         to include house dust mite, tree and grass pollen or other
         equivalent common aeroallergens;

    *    skin prick tests with freshly prepared, properly buffered
         saline solutions (e.g., 5% v/v glycerol/water containing 2.5 g
         NaCl/litre, 1.37 g NaHCO3/litre, and 2 g phenol per litre) of
         (NH4)2[PtCl6], Na2[PtCl4], and Na2[PtCl6].
         Concentrations used for testing may vary from 10-9 to 10-3
         g/ml depending on specific situations. All tests should be
         performed in duplicate and should include a positive and
         negative saline control.

    11.2  Substitution with non-allergenic substances

         An attempt should be made to substitute, whenever practicable,
    non-allergenic for allergenic platinum compounds during refining,
    manufacturing, and use.

    11.3  Employment screening and medical evaluations

    a)   To detect sensitization during employment, skin prick tests
         should be performed on all potentially exposed people at least
         once a year. There is no convincing evidence that repeated
         platinum skin testing could cause sensitization. Quarterly
         testing intervals might be considered during the first two
         years of employment, as sensitization more often occurs during
         this period.

    b)   If medical symptoms or signs suggest the development of PSH,
         the worker should be removed from any risk of exposure as soon
         as possible. To detect functional changes in the respiratory
         tract, lung function assessment, as described in section 11.1,
         should also be performed at appropriate intervals.

    11.4  Workplace hygiene

    a)   Since PSH can occur despite time-weighted average workplace
         concentrations being consistently below the ACGIH threshold
         limit value (TLV) of 2 µg/m3, the most effective prevention
         is the improvement of control measures. This includes enclosed
         processing and optimal ventilation in order to reduce exposure
         to platinum salt aerosols and dusts to the lowest practicable
         limit.

    b)   It has been suggested that high but short-lived platinum
         concentrations resulting from spills or accidents are of
         importance with respect to sensitization. Since the correlation
         between the platinum exposure concentration and the development
         of sensitization is unknown, a recommendation for a reduction
         in the occupational exposure limit cannot be justified.
         However, it is recommended that the commonly used occupational
         exposure limit of 2 µg/m3 be changed from an 8-h time-
         weighted average (TWA) to a ceiling value and that personal
         sampling devices be used in conjunction with area sampling to
         determine more correctly the true platinum exposure.

    c)   Engineering controls should always be in place to minimize
         exposure. However, in some circumstances the use of protective
         clothing, including specially designed airstream helmets, may
         be necessary.

    d)   Workers should be provided with clean overalls solely for use
         in the workplace, and showering facilities. Outdoor clothes
         should not be worn in the workplace. 

    12.  FURTHER RESEARCH

    a)   As there appears to be a lack of information concerning the
         concentration-response relationship for the development of PSH
         in experimental animals, studies should be performed to
         investigate the effect of exposure concentration on
         sensitization and to define the thresholds for sensitization
         and elicitation.

    b)   The effect of predisposing factors such as pulmonary hyper-
         reactivity should be investigated in greater detail to
         determine their applicability for screening and identifying
         individuals at risk of developing PSH.

    c)   The use of provocation challenge with soluble platinum salts as
         an indicator of sensitization should be investigated to
         determine if it is a more sensitive indicator than skin prick
         tests.

    d)   The majority of human occupational studies regarding PSH were
         performed as cross-sectional studies at platinum refineries.
         Due to the inherent lack of sensitivity of this type of study
         with respect to past exposures and workers leaving employment
         because of disease, longitudinal studies should be performed to
         determine the true incidence of PSH in worker populations. In
         addition, human studies should be designed to study, for
         instance, exposure concentration effects on sensitization and
         determine thresholds for sensitization and elicitation.

    e)   The extent of occupational and environmental exposure to
         cisplatin is not known at the present time. It is recommended
         that studies be initiated to determine exposure during the
         manufacture and use of this compound.

    f)   Further measurements of the quantities and speciation of
         platinum emitted from automobile catalysts should be performed.

    g)   The toxic effects of finely divided metallic platinum on humans
         and animals have not been studied adequately. Adequate
         inhalation studies are initially required, and further tests
         may be necessary.

    h)   Quality control programmes should be initiated to ensure the
         accuracy and precision of sampling methods and analyses and to
         facilitate comparability.

    i)   Platinum-containing exhaust emissions from automobile catalysts
         most probably do not pose an adverse health effect for the
         general population. However, to be on the safe side, the
         possibility should be kept under review.

    13.  PREVIOUS EVALUATIONS BY INTERNATIONAL BODIES

         The carcinogenicity of platinum and platinum compounds has not
    been evaluated by international bodies, except for cisplatin, which
    has not been covered in detail in this Environmental Health Criteria
    monograph (see also footnote in section 1.2).

         The International Agency for Research on Cancer (IARC, 1987b)
    considered the evidence for carcinogenicity of cisplatin for animals
    to be sufficient, but that for humans inadequate. Cisplatin is
    classified in Group 2A, i.e. probably carcinogenic to humans.

    REFERENCES

    ACGIH (1980) Documentation of the threshold limit values, 4th ed.,
    Cincinnati, Ohio, American Conference of Governmental Industrial
    Hygienists, pp. 343-344.

    ACGIH (1990) Threshold limit values for chemical substances and
    physical agents and biological exposure indices for 1990-1991,
    Cincinnati, Ohio, American Conference of Governmental Industrial
    Hygienists, p. 31.

    AGIORGITIS, G. & GUNDLACH, H. (1978) [Platinum contents of deep sea
    manganese nodules.] Naturwissenschaften, 65: 534 (in German).

    AGNES, G., HILL, H.A.O., PRATT, J.M., RIDSDALE, S.C., KENNEDY, F.S.,
    & WILLIAMS, R.J.P. (1971) Methyl transfer from methyl vitamin B12.
    Biochim. Biophys. Acta, 252: 207-211.

    AGOOS, A. (1986) Metal reclaimers find slim pickings. Chem. Week,
    138: 21-23.

    ALEXANDER, P.W., HOH, R., & SMYTHE, L.E. (1977a) Trace determination
    of platinum, I. A catalytic method using pulse polarography.
    Talanta, 24: 543- 548.

    ALEXANDER, P.W., HOH, R., & SMYTHE, L.E. (1977b) Trace determination
    of platinum, II. Analysis in ores by pulse polarography after fire-
    assay collection. Talanta, 24: 549-554.

    ALT, F., JERONO, U., MESSERSCHMIDT, J., & TÖLG, G. (1988) The
    determination of platinum in biotic and environmental materials: I.
    µg/kg to g/kg- range. Mikrochim. Acta, 3: 299-304.

    AMOSSE, J., FISCHER, W., ALLIBERT, M., & PIBOULE, M. (1986) Méthode
    de dosage d'ultra-traces de platine, palladium, rhodium et or dans
    les roches silicatées par spectrophotométrie d'absorption atomique
    électrothermique. Analusis, 14: 26-31.

    ANDERSEN, K.S. (1979) Platinum(II) complexes generate frame-shift
    mutations in test strains of  Salmonella typhimurium. Mutat. Res.,
    67: 209-214.

    ANDREWS, P.A., WUNG, W.E., & HOWELL, S.B. (1984) A high-performance
    liquid chromatographic assay with improved selectivity for cisplatin
    and active platinum (II) complexes in plasma ultrafiltrate. Anal.
    Biochem., 43: 46-56.

    ANEVA, Z., ARPADJAN, S., ALEXANDROV, S., & KOVATCHEVA, K. (1986)
    Synergetic extraction of platinum(IV) from dilute hydrochloric acid
    by isoamyl alcohol-methylisobutylketone mixture. Mikrochim. Acta, 1:
    341-350.

    ANON. (1990a) Nitric acid catalysts: the economic significance of
    composition, operation conditions and recovery techniques. Nitrogen,
    183: 27-32.

    ANON. (1990b) Growth slackens appreciably as 1980s end. Chem. Eng.
    News, 18 June: 36-43.

    ANUSAVICE, K.J. (1985) Noble metal alloys for metal-ceramic
    restorations. Dent. Clin. North Am., 29: 789-803.

    ARPADJAN, S., MITEWA, M., & BONTCHEV, P.R. (1987) Liquid-liquid
    extraction of metal ions by the 6-membered N-containing macrocycle
    hexacyclen. Talanta, 34: 953-956.

    BANKOVSKY, Y.A., VIRCAVS, M.V., VEVERIS, O.E., PELNE, A.R., &
    VIRCAVA, D.K. (1987) Preconcentration of microamounts of elements in
    natural waters with 8-mercaptoquinoline and bis(8-quinolyl)
    disulphide for their atomic-absorption determination. Talanta, 34:
    179-182.

    BANNISTER, S.J., CHANG, Y., STERNSON, L.A., & REPTA, A.J. (1978)
    Atomic absorption spectrophotometry of free circulating platinum
    species in plasma derived from cis-dichlorodiammineplatinum(II).
    Clin. Chem., 24: 877-880.

    BARLOW, S.M. & SULLIVAN, F.M. (1982) Reproductive hazards of
    industrial chemicals, London, Academic Press, pp. 431-436.

    BARNES, G.D. & TALBERT, L.D. (1984) The effect of platinum on
    population and absorbance of  Euglena gracilis, Klebs utilizing a
    method with atomic absorption and coulter counter analysis. J.
    Mississipi Acad. Sci., 29: 143-150.

    BAUMGÄRTNER, M.E. & RAUB, Ch.J. (1988) The electrodeposition of
    platinum and platinum alloys. Platinum Met. Rev., 32: 188-197.

    BELLIVEAU, J.F., MATOOK, G.M., O'LEARY, G.P., Jr, CUMMINGS, F.J.,
    HILLSTROM, M., & CALABRESI, P. (1986) Microanalysis for platinum and
    magnesium in body fluids and brain tissue of mice treated with  cis-
    platinum using graphite filament plasma emission spectroscopy. Anal.
    Lett., 19: 135- 149.

    BERNDT, H., SCHALDACH, G., & KLOCKENKÄMPER, R. (1987) Improvement of
    the detection power in electrothermal atomic absorption spectrometry
    by summation of signals. Determination of traces of metals in
    drinking water and urine. Anal. Chim. Acta, 200: 573-579.

    BIAGINI, R.E., CLARK, J.C., GALLAGHER, J.S., BERNSTEIN, I.L., &
    MOORMAN, W.M. (1982) Passive transfer in the monkey of human
    immediate hyper- sensitivity to complex salts of platinum and
    palladium. Fed. Proc., 41: 827.

    BIAGINI, R.E., MOORMAN, W.J., SMITH, R.J., LEWIS, T.R., & BERNSTEIN,
    I.L. (1983) Pulmonary hyperreactivity in cynomolgus monkeys  (Macaca
     fasicularis) from nose-only inhalation exposure to disodium
    hexachloroplatinate, Na2PtCl6. Toxicol. appl. Pharmacol., 69:
    377-384.

    BIAGINI, R.E., BERNSTEIN, I.L., GALLAGHER, J.S., MOORMAN, W.J.,
    BROOKS, S., & GANN, P.H. (1985) The diversity of reaginic immune
    responses to platinum and palladium metallic salts. J. Allergy clin.
    Immunol., 76: 794-802.

    BIAGINI, R.E., MOORMAN, W.J., LEWIS, T.R., & BERNSTEIN, I.L. (1986)
    Ozone enhancement of platinum asthma in a primate model. Am. Rev.
    Respir. Dis., 134: 719-725.

    BIESINGER, K.E. & CHRISTENSEN, G.M. (1972) Effects of various metals
    on survival, growth, reproduction, and metabolism of  Daphnia magna.
    J. Fish Res. Board Can., 29: 1691-1700.

    BODENNER, D.L., DEDON, P.C., KENG, P.C., KATZ, J.C., & BORCH, R.F.
    (1986) Selective protection against  cis-diamminedichloroplatinum
    (II)-induced toxicity in kidney, gut, and bone marrow by
    diethyldithiocarbamate. Cancer Res., 46: 2751-2755.

    BOGGS, P.B. (1985) Platinum allergy. Cutis, 35: 318-320.

    BOLM-AUDORFF, U., BIENFAIT, H.-G., BURKHARD, J., BURY, A.-H.,
    MERGET, R., PRESSEL, G., & SCHULTZE-WERNINGHAUS, G. (1988) [On the
    frequency of respiratory allergies in a platinum processing
    factory.] In: Baumgartner, E., Brenner, W., Dierich, M.P., &
    Rutenfranz, J., ed. [Industrial change - Occupational medicine
    facing new questions. Report of the 28th Annual Meeting of the
    German Society for Occupational Medicine, Innsbruck, Austria, 4-7
    May 1988] Stuttgart, Gentner Verlag, pp. 411-416 (in German).

    BORCH, R.F., MARKOVITZ, J.H., & PLEASANTS, M.E. (1979) A new method
    for the HPLC analysis of Pt(II) in urine. Anal. Lett., 12: 917-926.

    BOUMANS, P.W.J.M. & VRAKKING, J.J.A.M. (1987) Detection of about 350
    prominent lines of 65 elements observed in 50 and 27 MHz inductively
    coupled plasmas (ICP): effects of source characteristics, noise and
    spectral bandwidth - "Standard" values for the 50 MHz ICP.
    Spectrochim. Acta, 42B: 553-579.

    BOWEN, H.J.M. (1979) Environmental chemistry of the elements,
    London, Academic Press, p. 37.

    BRADFORD, C.W. (1988) Platinum. In: Seiler, H.G. & Sigel, H., ed.
    Handbook of toxicity of inorganic compounds, New York, Basel, Marcel
    Dekker, pp. 533-539.

    BRAJTER, K. & KOZICKA, U. (1979) Extractive spectrophotometric
    determination of platinum, rhodium and iridium. Talanta, 26:
    417-419.

    BROOKS, S.M., BAKER, D.B., GANN, P.H., JARABEK, A.M., HERTZBERG, V.,
    GALLAGHER, J., BIAGINI, R.E., & BERNSTEIN, I.L. (1990) Cold air
    challenge and platinum skin reactivity in platinum refinery workers.
    Bronchial reactivity precedes skin prick response. Chest, 79:
    1401-1407.

    BROWN, A.A. & LEE, M. (1986) Peak profile and appearance times using
    totally pyrolytic cuvettes in graphite furnace atomic absorption
    spectrometry. Anal. Chem., 323: 697-702.

    BRUBAKER, P.E., MORAN, J.P., BRIDBORD, K., & HUETER, F.G. (1975)
    Noble metals: a toxicological appraisal of potential new
    environmental contaminants. Environ. Health Perspect., 10: 39-56.

    BURGE, P.S., HARRIES, M.G., O'BRIEN, I.M., & PEPYS, J. (1979)
    Evidence for specific hypersensitivity in occupational asthma due to
    small molecular weight chemicals and an organic (locust) allergen.
    In: Pepys, J. & Edwards, A.M., ed. The mast cell - its role in
    health and disease, Tunbridge Wells, Kent, United Kingdom, Pitman
    Medical Publishing Co., Ltd, pp. 301-308. 

    BUTTERMAN, W.C. (1975) Platinum-group metals. Minerals Yearbook 1973
    Metals, Minerals, and Fuels, Washington, DC, US Department of the
    Interior, Bureau of Mines, pp. 1037-1049.

    CAMPBELL, K.I., GEORGE, E.L., HALL, L.L., & STARA, J.F. (1975)
    Dermal irritancy of metal compounds. Arch. environ. Health, 30:
    168-170.

    CHANG, C.C. & TATUM, H.J. (1975) Effect of intrauterine copper wire
    on resorption of foetuses in rats. Contraception, 11: 79-84.

    CHANG, C.C., TATUM, H.J., & KINCL, F.A. (1970) The effect of
    intrauterine copper and other metals on implantation in rats and
    hamsters. Fertil. Steril. 21(3): 274-278.

    CHEY, R.D., LEE, K.Y, ASBURY, R., & CHEY, W.Y. (1988) Effect of
    cisplatin on myoelectric activity of the stomach and small intestine
    in dogs. Dig. Dis. Sci., 33: 338-344.

    CLEARE, M.J. (1977a) Some aspects of platinum complex chemistry and
    their relation to anti-tumor activity. J. clin. Hematol. Oncol., 7:
    1-21.

    CLEARE, M.J. (1977b) Immunological studies on platinum complexes and
    their possible relevance to autocatalysts. Proceedings of the
    International Automotive Engineering Congress and Exposition, Cobo

    Hall, Detroit, 28 February - 4 March 24, 1977, Detroit, Michigan
    Society of Automotive Engineers, 12 pp (SAE Report No. 770061).

    CLEARE, M.J., HUGHES, E.G., JACOBY, B., & PEPYS, J. (1976) Immediate
    (type I) allergic responses to platinum compounds. Clin. Allergy, 6:
    183-195.

    COOMBES, R.J. & CHOW, A. (1979) A comparison of methods for the
    determination of platinum in ores. Talanta, 26: 991-998.

    CROMWELL, O., PEPYS, J., PARISH, W.E, & HUGHES, E.G. (1979) Specific
    IgE antibodies to platinum salts in sensitized workers. Clin.
    Allergy, 9: 109-117.

    CVITKOVIC, E., SPAULDING, J., BETHUNE, V., MARTIN, J., & WHITMORE,
    W.F. (1977) Improvement of  cis-dichlorodiammineplatinum (NSC
    119875): therapeutic index in an animal model. Cancer, 39:
    1357-1361.

    D'AGOSTINO, R.B., LOWN, B.A., MORGANTI, J.B., CHAPIN, E., & MASSARO,
    E.J. (1984) Effects on the development of offspring of female mice
    exposed to platinum sulfate or sodium hexachloroplatinate during
    pregnancy or lactation. J. Toxicol. environ. Health, 13: 879-891.

    DALLY, M.B., HUNTER, J.V., HUGHES, E.G., STEWART, M., & NEWMAN
    TAYLOR, A.J. (1980) Hypersensitivity to platinum salts: a population
    study. Am. Rev. respir. Dis., 121(4/Part 2): 230.

    DE CONTI, R.C., TOFTNESS, B.R., LANGE, R.C., & CREASEY, W.A. (1973)
    Clinical and pharmacological studies with  cis-diammine-
    dichloroplatinum (II). Cancer Res., 33: 1310-1315.

    DEGUSSA (1988a) Ammonium-tetrachloroplatinate(II) - Acute toxicity.
    Testing the primary irritancy after single application to the skin
    of the rabbit (patch test), Hanau, Germany, Degussa AG (Unpublished
    report No. 863897).

    DEGUSSA (1988b) Ammonium-tetrachloroplatinate(II) - Acute toxicity.
    Testing the primary irritancy after single application to the eye of
    the rabbit, Hanau, Germany, Degussa AG (Unpublished report No.
    863908).

    DEGUSSA (1988c) Trans-diammine-dichloroplatinum(II) - Acute
    toxicity. Testing the primary irritancy after single application to
    the skin of the rabbit, Hanau, Germany, Degussa AG (unpublished
    report No. 864011).

    DEGUSSA (1988d) Trans-diammine-dichloroplatinum(II) - Acute
    toxicity. Testing the primary irritancy after single application to
    the eye of the rabbit, Hanau, Germany, Degussa AG (Unpublished
    report No. 864022).

    DEGUSSA (1989a) Ammoniumtetrachloroplatinate(II) - Acute toxicity
    after single oral administration in rats, Hanau, Germany, Degussa AG
    (Unpublished report No. 863886).

    DEGUSSA (1989b) Dinitrodiammine-platinum(II) - Acute toxicity after
    single oral administration in rats, Hanau, Germany, Degussa AG
    (Unpublished report No. 863910).

    DEGUSSA (1989c) Trans-diammine-dichloroplatinum(II) - Acute toxicity
    after single oral administration in rats, Hanau, Germany, Degussa AG
    (Unpublished report No. 864000).

    DEGUSSA (1989d) Dinitrodiammine-platinum(II) - Acute toxicity.
    Testing the primary irritancy after single application to the skin
    of the rabbit (patch test), Hanau, Germany, Degussa AG (Unpublished
    report No. 863921).

    DEGUSSA (1989e) Dinitrodiammine-platinum(II) - Acute toxicity.
    Testing the primary irritancy after single application to the eye of
    the rabbit), Hanau, Germany, Degussa AG (Unpublished report No.
    863932).

    DISSANAYAKE, C.B. (1983) Metal-organic interactions in environmental
    pollution. Int. J. environ. Stud., 22: 25-42.

    DISSANAYAKE, C.B., KRITSOTAKIS, K., & TOBSCHALL, H.J. (1984) The
    abundance of Au, Pt, Pd, and the mode of heavy metal fixation in
    highly polluted sediments from the Rhine River near Mainz, West
    Germany. Int. J. environ. Stud., 22: 109-119.

    DONALDSON, P.E.K. (1987) The role of platinum metals in neurological
    prostheses. Platinum Met. Rev., 31: 2-7.

    DUFFIELD, F.V.P., YOAKUM, A., BUMGARNER, J., & MORAN, J. (1976)
    Determination of human body burden baseline data of platinum through
    autopsy tissue analysis. Environ. Health Perspect., 15: 131-134.

    EBINA, T., SUZUKI, H., & YOTSUYANAGI, T. (1983) [Spectrophotometric
    determination of palladium(II) and platinum(II) with
    maleonitriledithiol by reversed phase ion-pair chromatography.]
    Bunseki Kagaku, 32: 575-580 (in Japanese).

    ELLER, P.M., ed. (1984a) Elements (ICP). In: NIOSH manual of
    analytical methods, 3rd ed., Cincinnati, Ohio, National Institute
    for Occupational Safety and Health, Vol. 1, pp. 7300-1-7300-5.

    ELLER, P.M., ed. (1984b) Elements in blood or tissue. In: NIOSH
    manual of analytical methods, 3rd ed., Cincinnati, Ohio, National
    Institute for Occupational Safety and Health, Vol.2, pp.
    8005-1-8005-5.

    ELLER, P.M., ed. (1984c) Metals in urine. In: NIOSH manual of
    analytical methods, 3rd ed., Cincinnati, Ohio, National Institute
    for Occupational Safety and Health, Vol. 2, pp. 8310-1-8310-6.

    ETTINGER, L.J. & FREEMAN, A.I. (1979) The gingival platinum line. A
    new finding following  cis-dichlorodiammine platinum(II) treatment.
    Cancer, 44: 1882-1884.

    FANCHIANG, Y.-T. (1985) Reactions of alkylcobalamins with platinum
    complexes. Coord. Chem. Rev., 68: 131-144.

    FANCHIANG, Y-T., RIDLEY, W.P., & WOOD, J.M. (1979) Methylation of
    platinum complexes by methylcobalamin. J. Am. Chem. Soc., 101:
    1442-1447.

    FARAGO, M.E. & PARSONS, P.J. (1982) Determination of platinum,
    palladium and rhodium by atomic-absorption spectroscopy with
    electrothermal atomisation. Analyst, 107: 1218-1228.

    FARAGO, M.E. & PARSONS, P.J. (1985) Effects of platinum metals on
    plants. Trace Subst. environ. Health, 19: 397-407.

    FARAGO, M.E. & PARSONS, P.J. (1986) The effect of platinum, applied
    as potassium tetrachloroplatinate, on  Setaria verticillata (L) P.
    Beauv. and its growth on flotation tailings. Environ. Technol.
    Lett., 7: 147-154.

    FERREIRA, P.F. & WOLKE, R.E. (1979) Acute toxicity of platinum to
    coho salmon  (Oncorhynchus kisutch). Mar. Pollut. Bull., 10: 79-83.

    FILLASTRE, J.P. & RAGUENEZ-VIOTTE, G. (1989) Cisplatin
    nephrotoxicity. Toxicol. Lett., 46: 163-175.

    FOTHERGILL, S.J.R., WITHERS, D.F., & CLEMENTS, F.S. (1945)
    Determination of traces of platinum and palladium in the atmosphere
    of a platinum refinery. Br. J. ind. Med., 2: 99-101.

    FOX, R.L. (1984) Enhancement errors in the determination of platinum
    group metals in alumina-based matrices by direct-current plasma
    emission spectrometry. Appl. Spectrosc., 38: 644-647.

    FREEDMAN, S.O. & KRUPEY, J. (1968) Respiratory allergy caused by
    platinum salts. J. Allergy, 42: 233-237.

    FRYER, B.J. & KERRICH, R. (1978) Determination of precious metals at
    ppb levels in rocks by a combined wet chemical and flameless atomic
    absorption method. At. Absorpt. Newsl., 17: 4-6.

    FUCHS, W.A. & ROSE, A.W. (1974) The geochemical behavior of platinum
    and palladium in the weathering cycle in the Stillwater Complex,
    Montana. Econ. Geol., 69: 332-346.

    GALLAGHER, J.S., BAKER, D., GANN, P.H., JARABEK, A.M., BROOKS, S.M.,
    & BERNSTEIN, I.L. (1982) A cross sectional investigation of workers
    exposed to platinum salts. J. Allergy clin. Immunol., 69: 134.

    GECKELER, K.E., BAYER, E., SPIVAKOV, B.Y., SHKINEV, V.M., &
    VOROB'EVA, G.A. (1986) Liquid-phase polymer-based retention; a new
    method for separation and preconcentration of elements. Anal. Chim.
    Acta, 189: 285-292.

    GLADKOVA, E.V., ODINTSOVA, F.P., VOLKOVA, I.D., & VINOGRADOVA, V.K.
    (1974) [Health status of workers engaged in the production of the
    platinum catalyst.] Gig. Tr. prof.Zabol., 3: 10-13 (in Russian).

    GOLDBERG, E.D., HODGE, V.F., GRIFFIN, J.J., KOIDE, M., & EDGINGTON,
    D.N. (1981) The impact of fossil fuel combustion on the sediments of
    Lake Michigan. Environ. Sci. Technol., 15: 466-471.

    GOLDBERG, E.D., HODGE, V., KAY, P., STALLARD, M., & KOIDE, M. (1986)
    Some comparative marine chemistries of platinum and iridium. Appl.
    Geochem., 1: 227-232.

    GOLDSCHMIDT, V.M. (1954) Geochemistry, London, Oxford University
    Press, 730 pp.

    GREGOIRE, D.C. (1988) Determination of platinum, palladium,
    ruthenium and iridium geological materials by inductively coupled
    plasma mass spectrometry with sample introduction by electrothermal
    vaporization. J. anal. at. Spectrom., 3: 309-314.

    GROOTVELD, M.C. (1985) Studies on the reaction mechanisms of metal
    complexes of biological and immunochemical interest, London,
    University of London, Department of Chemistry, 341 pp (Thesis).

    GROTE, M. & KETTRUP, A. (1987) Ion-exchange resins containing S-
    bonded dithizone and dehydrodithizone as functional groups. Part 3.
    Determination of gold, platinum and palladium in geological samples
    by means of a dehydrodithizone resin and plasma emission
    spectrometry. Anal. Chim. Acta, 201: 95-107.

    GSF (1990) [Noble metal emissions - interim report; Research
    Programme of the Federal Ministry of Research and Technology],
    Munich, Association for Radiation and Environmental Research (GSF),
    45 pp. (in German).

    HALBACH, P., PUTEANUS, D., & MANHEIM, F.T. (1984) Platinum
    concentrations in ferromanganese seamount crusts from the central
    Pacific. Naturwissenschaften, 71: 577-579.

    HAMILTON, E.L. & MINSKI, M.J. (1972/1973) Abundance of the chemical
    elements in man's diet and possible relations with environmental
    factors. Sci. total Environ., 1: 375-394.

    HAMNER, C.L. (1942) Effects of platinum chloride on bean and tomato.
    Bot. Gaz., 104: 161-166.

    HARDER, H.C. & ROSENBERG, B. (1970) Inhibitory effects of anti-tumor
    platinum compounds on DNA, RNA and protein syntheses in mammalian
    cells in vitro. Int. J. Cancer, 6: 207-216.

    HARDMAN, R.S. & WRIGHT, C.H. (1896) A case of poisoning by
    chloroplatinite of potassium. Br. med. J., 1: 529.

    HAYES, F.A., GREEN, A.A., SENZER, N., & PRATT, C.B. (1979) Tetany: a
    complication of cis-dichlorodiammine-platinum(II) therapy. Cancer
    Treat. Rep., 63: 547-548.

    HEALTH AND SAFETY EXECUTIVE (1983) The medical monitoring of workers
    exposed to platinum `salts', London, Her Majesty's Stationery
    Office, 2 pp (MS/22).

    HEALTH and SAFETY EXECUTIVE (1985) Platinum metal and soluble
    inorganic compounds of platinum in air. Laboratory method using
    carbon furnace atomic absorption spectrometry, London, Her Majesty's
    Stationery Office, 4 pp (MDHS 46).

    HEALTH AND SAFETY EXECUTIVE (1990) Occupational exposure limits
    1990. Guidance note EH 40190, London, Her Majesty's Stationery
    Office.

    HEBERT, R. (1966) Affections provoquées par les composés du platine.
    Arch. Mal. prof. Méd. Trav. Sécur. soc., 27: 877-886.

    HILL, J.M., LOEB, E., MACLELLAN, A., HILL, N.O., KHAN, A., & KING,
    J.J. (1975) Clinical studies of platinum coordination compounds in
    the treatment of various malignant diseases. Cancer Chemother. Rep.,
    59(Part 1): 647-659.

    HILL, R.F. & MAYER, W.J. (1977) Radiometric determination of
    platinum and palladium attrition from automotive catalysts. IEEE
    Trans. nucl. Sci., NS-24: 2549-2554.

    HODGE, V.F. & STALLARD, M.O. (1986) Platinum and palladium in
    roadside dust. Environ. Sci. Technol., 20: 1058-1060.

    HODGE, V.F., STALLARD, M., KOIDE, M., & GOLDBERG, E.D. (1985)
    Platinum and the platinum anomaly in the marine environment. Earth
    planet. Sci. Lett., 72: 158-162.

    HODGE, V.F., STALLARD, M., KOIDE, M., & GOLDBERG, E.D. (1986)
    Determination of platinum and iridium in marine waters, sediments,
    and organisms. Anal. Chem., 58: 616-620.

    HOESCHELE, J.D. & VAN CAMP, L. (1972) Whole-body counting and the
    distribution of cis195m[Pt(NH3)2Cl2] in the major organs of
    Swiss white mice. In: Hejzlar, M., ed. Advances in antimicrobial and
    antineoplastic chemotherapy, Baltimore, University Park Press, Vol.
    2, pp. 241-242.

    HOEVE, L.J., CONIJIN, E.A.J.G., MERTENS ZUR BORG, I.R.A.M., &
    RODENBURG, M. (1987) Development of cis-platinum-induced hearing
    loss in guinea pigs. Arch. Otorhinolaryngol., 244: 265-268.

    HOFFMANN, R.L. (1988) The effect of cisplatin and platinum (IV)
    chloride on cell growth, RNA, protein, ribosome and DNA synthesis in
    yeast. Toxicol. environ. Chem., 17: 139-151.

    HOFMEISTER, F. (1882) [On the physiologic effects of the platinum
    bases.] Naunyn-Schmiedeberg's Arch. exp. Pathol. Pharmakol., 16:
    393-439 (in German).

    HOLBROOK, D.J., Jr (1976a) Assessment of toxicity of automotive
    metallic emissions, Vol. I: Assessment of fuel additives emission
    toxicity via selected assays of nucleic and protein synthesis,
    Research Triangle Park, North Carolina, US Environmental Protection
    Agency, Office of Research and Development, Health Effects Research
    Laboratories, 67 pp (EPA/600/1-76/010a).

    HOLBROOK, D.J., Jr (1976b) Assessment of toxicity of automotive
    metallic emissions, Vol. II: Relative toxicities of automotive
    metallic emissions against lead compounds using biochemical
    parameters, Research Triangle Park, North Carolina, US Environmental
    Protection Agency, Office of Research and Development, Health
    Effects Research Laboratories, 69 pp. (EPA/600/1-76/010b).

    HOLBROOK, D.J., Jr (1977) Content of platinum and palladium in rat
    tissue: correlation of tissue concentration of platinum and
    palladium with biochemical effects, Research Triangle Park, North
    Carolina, US Environmental Protection Agency, Office of Research and
    Development, Health Effects Research Laboratory, 21 pp.
    (EPA/600/1-77/051).

    HOLBROOK, D.J., Jr, WASHINGTON, M.E., LEAKE, H.B., & BRUBAKER, P.E.
    (1975) Studies on the evaluation of the toxicity of various salts of
    lead, manganese, platinum, and palladium. Environ. Health Perspect.,
    10: 95- 101.

    HOPPE, R. (1965) [Chemistry of the noble gases.] Fortschr. chem.
    Forsch., 5: 213-346 (in German).

    HOPPSTOCK, K., ALT, F., CAMMANN, K., & WEBER, G. (1989)
    Determination of platinum in biotic and environmental materials.
    Part II: A sensitive voltammetric method. Fresenius Z. anal. Chem.,
    335: 813-816.

    HOWLE, J.A. & GALE, G.R. (1970) Cis-dichlorodiammineplatinum (II)
    persistent and selective inhibition of deoxyribonucleic acid
    synthesis  in vivo. Biochem. Pharmacol., 19: 2757-2762.

    HUGHES, E.G. (1980) Medical surveillance of platinum refinery
    workers. J. Soc. Occup. Med., 30: 27-30.

    HUNTER, D., MILTON, R., & PERRY, K.M.A. (1945) Asthma caused by the
    complex salts of platinum. Br. J. ind. Med., 2: 92-98.

    IARC (1987a) Cisplatin. In: Genetic and related effects: an updating
    of selected IARC Monographs from Volumes 1 to 42, Lyon,
    International Agency for Research on Cancer, pp. 178-181 (IARC
    Monographs on the Evaluation of Carcinogenic Risks to Humans, Suppl.
    6).

    IARC (1987b) Cisplatin (Group 2A). In: Overall evaluations of
    carcinogenicity: an updating of IARC Monographs Volumes 1 to 42,
    Lyon, International Agency for Research on Cancer, pp. 170-171 (IARC
    Monographs on the Evaluation of Carcinogenic Risks to Humans, Suppl.
    7).

    IMURA, N. (1986) The role of micronutrient selenium in the
    manifestation of toxicity of heavy metals. Toxicol. Lett., 31: 11.

    INGALLS, M.N. & GARBE, R.J. (1982) Ambient pollutant concentrations
    from mobile sources in microscale situations, Warrendale,
    Pennsylvania, Society of Automotive Engineers, Inc., 16 pp (SAE
    Technical Paper Series. No. 820787).

    ITO, E. & KIDANI, Y. (1982) Determination of platinum in the
    environmental samples by graphite furnace atomic absorption
    spectrophotometry. Bunseki Kagaku, 31: 381-388.

    JACOBS, L. (1987) Platinum salt sensitivity. Nurs. RSA Verpleging
    (Republic of South Africa), 2: 34-37.

    JOHNSON, D.E., TILLERY, J.B., & PREVOST, R.J. (1975) Levels of
    platinum, palladium, and lead in populations of Southern California.
    Environ. Health Perspect., 12: 27-33.

    JOHNSON, D.E., PREVOST, R.J., TILLERY, J.B., CAMAN, D.E., &
    HOSENFELD, J.M. (1976) Baseline levels of platinum and palladium in
    human tissue, San Antonio, Texas, Southwest Research Institute, 252
    pp. (EPA/600/1- 76/019).

    JOHNSON, N.P., HOESCHELE, J.D., RAHN, R.O., O'NEIL, P.J., & HSIE,
    A.W. (1980) Mutagenicity, cytotoxicity and DNA binding of
    platinum(II)-chloroammines in chinese hamster ovary cells. Cancer
    Res., 40: 1463-1468.

    JOHNSON MATTHEY (1976a) Acute oral toxicity study CB10:
    Bis(acetylacetonate) platinum(II), Reading, United Kingdom, Johnson
    Matthey Research Centre (Unpublished report No. 8/7610)

    JOHNSON MATTHEY (1976b) Skin irritation study, CB10:
    Bis(acetylacetonate) platinum(II), Reading, United Kingdom, Johnson
    Matthey Research Centre (Unpublished report No. 8/7610).

    JOHNSON MATTHEY (1976c) Eye irritation study CB10:
    Bis(acetylacetonate) platinum(II), Reading, United Kingdom, Johnson
    Matthey Research Centre (Unpublished report No.8/7610).

    JOHNSON MATTHEY (1977a) Acute oral toxicity study, CB20: Potassium
    tetracyanoplatinate(II), Reading, United Kingdom, Johnson Matthey
    Research Centre (Unpublished report No. 86/7709).

    JOHNSON MATTHEY (1977b) Acute oral toxicity study, CB18: Tetrammine
    platinous chloride, Reading, United Kingdom, Johnson Matthey
    Research Centre (Unpublished report No. 248/7702).

    JOHNSON MATTHEY (1977c) Acute oral toxicity study, CB18:
    Cis[PtCl2(NH3)2], Reading, United Kingdom, Johnson Matthey
    Research Centre (Unpublished report No. 216/7707).

    JOHNSON MATTHEY (1977d) Primary skin irritation study, CB20:
    Potassium tetracyanoplatinate(II), Reading, United Kingdom, Johnson
    Matthey Research Centre (Unpublished report No. 88/7709).

    JOHNSON MATTHEY (1977e) Skin irritation study, CB13: Tetrammine
    platinous chloride, Reading, United Kingdom, Johnson Matthey
    Research Centre (Unpublished report No. 113/7701).

    JOHNSON MATTHEY (1977f) Eye irritation study, CB13: Tetrammine
    platinous chloride, Reading, United Kingdom, Johnson Matthey
    Research Centre (Unpublished report No. 252/7702).

    JOHNSON MATTHEY (1977g) Primary skin irritation study, CB18:
    Cis[PtCl2(NH3)2], Reading, United Kingdom, Johnson Matthey
    Research Centre (Unpublished report No. 217/7707).

    JOHNSON MATTHEY (1977h) Eye irritation/toxicity study, sample CB18:
    Cis[PtCl2(NH3)2], Reading, United Kingdom, Johnson Matthey
    Research Centre (Unpublished report No. 337/7802).

    JOHNSON MATTHEY (1978a) Acute oral toxicity study in the rat, CB14:
    Ammonium hexachloroplatinate, batch No. 57662, Reading, United
    Kingdom, Johnson Matthey Research Centre (Unpublished report No.
    106/7808).

    JOHNSON MATTHEY (1978b) Acute oral toxicity study, CB24: Sodium
    chloroplatinate, Reading, United Kingdom, Johnson Matthey Research
    Centre (Unpublished report No. 359/7711).

    JOHNSON MATTHEY (1978c) Acute oral toxicity study in the rat, CB70:
    Sodium hexachloroplatinate, Batch No. 031074, Reading, United
    Kingdom, Johnson Matthey Research Centre (Unpublished report No.
    42/7809).

    JOHNSON MATTHEY (1978d) Primary skin irritation study, sample CB14:
    Ammonium hexachloroplatinate, batch No. 57662, Reading, United
    Kingdom, Johnson Matthey Research Centre (Unpublished report No.
    109/7808).

    JOHNSON MATTHEY (1978e) Primary skin irritation study, sample CB24:
    Sodium chloroplatinate, batch No. 031003, Reading, United Kingdom,
    Johnson Matthey Research Centre (Unpublished report No. 245/7802).

    JOHNSON MATTHEY (1978f) Eye irritation study, sample CB24: Sodium
    chloroplatinate, batch No. 031003, Reading, United Kingdom, Johnson
    Matthey Research Centre (Unpublished report No. 240/7802).

    JOHNSON MATTHEY (1978g) Primary skin irritation study U.S. Federal
    Register 1973, sample CB70: Sodium hexahydroxyplatinate, batch No.
    031074, Reading, United Kingdom, Johnson Matthey Research Centre
    (Unpublished report No. 43/7809).

    JOHNSON MATTHEY (1978h) Eye irritation study, sample CB20: Potassium
    tetracyanoplatinate(II), Reading, United Kingdom, Johnson Matthey
    Research Centre (Unpublished report No. 318/7802).

    JOHNSON MATTHEY (1981a) An assessment of the acute oral toxicity of
    potassium tetracyanoplatinate(II)-MS 332 in the rat, experiment No.
    24/8112, Reading, United Kingdom, Johnson Matthey Research Centre
    (Unpublished report).

    JOHNSON MATTHEY (1981b) An assessment of the acute oral toxicity of
    potassium tetracyanoplatinate(II)-MS 332 in the rat, experiment No.
    216/8111, Reading, United Kingdom, Johnson Matthey Research Centre
    (Unpublished report).

    JOHNSON MATTHEY (1981c) OECD skin irritation test: determination of
    the degree of primary cutaneous irritation caused by potassium
    tetracyanoplatinate(II)-MS 332 in the rabbit, experiment No.
    631/8111, Reading, United Kingdom, Johnson Matthey Research Centre
    (Unpublished report).

    JOHNSON MATTHEY (1981d) OECD eye irritation test: determination of
    the degree of ocular irritation caused by potassium
    tetrachloroplatinate(II)-MS 332 in the rabbit, experiment No.

    278/8112, Reading, United Kingdom, Johnson Matthey Research Centre
    (Unpublished report).

    JOHNSON MATTHEY (1990) Platinum 1990, London, Johnson Matthey Public
    Limited Company, 64 pp.

    JONES, A.H. (1976) Determination of platinum and palladium in blood
    and urine by flameless atomic absorption spectrophotometry. Anal.
    Chem., 48: 1472-1474.

    JONES, E.A., WARSHAWSKY, A., DIXON, K., NICOLAS, D.J., & STEELE,
    T.W. (1977) The group extraction of noble metals with s-(1-Decyl)-
    N,N'-diphenylisothiouronium bromide and their determination in the
    organic extract by atomic-absorption spectrometry. Anal. Chim. Acta,
    94: 257-268.

    JUNG, H.J. & BECKER, E.R. (1987) Emission control for gas turbines.
    Platinum-rhodium catalysts for carbon monoxide and hydrocarbon
    removal. Platinum Met. Rev., 31: 162-170.

    KAHN, N. & VAN LOON, J.V. (1978) Direct atomic absorption
    spectrophotometric analysis of anion complexes of platinum and gold
    after their concentration and separation from aqueous solutions by
    anion exchange chromatography. Anal. Lett., 12: 991-1000.

    KANEMATSU, N., HARA, M., & KADA, T. (1980) Rec assay and
    mutagenicity studies on metal compounds. Mutat. Res., 77: 109-116.

    KARASEK, S.R. & KARASEK, M. (1911) The use of platinum paper. Report
    of (Illinois) Commission on Occupational Diseases to His Excellency
    Governor Charles S. Deneen, January 1911, Chicago, Warner Printing
    Company, p. 97

    KENAWY, I.M., KHALIFA, M.E., & EL-DEFRAWY, M.M. (1987)
    Preconcentration and determination (AAS) of trace Ag(I), Au(III),
    Pd(II) and Pt(IV) using a cellulose ion-exchanger (Hyphan).
    Analusis, 15: 314-317.

    KESSERÜ, E. & LEON, F., (1974) Effect of different solid metals and
    metallic pairs on human sperm motility. Int. J. Fertil., 19: 81-84.

    KHAN, A., HILL, J.M., GRATER, W., LOEB, E., MACLELLAN, A., & HILL,
    N. (1975) Atopic hypersensitivity to cis-dichlorodiammineplatinum
    (II) and other platinum complexes. Cancer Res., 35: 2766-2770.

    KNAPP, G. (1984) [Routes to powerful methods of elemental trace
    analysis in environmental samples.] Fresenius Z. anal. Chem., 317:
    213-219 (in German).

    KNAPP, G. (1985) Sample preparation techniques - An important part
    in trace element analysis for environmental research and monitoring.
    Int. J. environ. anal. Chem., 22: 71-83.

    KOBERSTEIN, E. (1984) [Catalysts for purifying automotive exhaust
    gas.] Chem. Zeit, 18: 37-45 (in German).

    KOIBA, R.J. & SLEIGHT, S.D. (1971) Acute toxicologic and pathologic
    effects of cis-diamminedichloroplatinum (NSC-119875) in the male
    rat. Cancer Chemother. Rep., 55(Part 1): 1-8.

    KOLPAKOVA, A.F. & KOLPAKOV, F.I. (1983) [Comparative study of
    sensitizing characteristics of the platinum group metals.] Gig. Tr.
    prof. Zabol., 7: 22-24 (in Russian).

    KÖNIG, H.P. & HERTEL, R.F. (1990) [Search and identification of
    gaseous noble metal emissions from catalysts. Investigations into
    the hazardous potential of catalyst-born nobel metal emissions],
    Hanover, Fraunhofer Institute of Toxicology and Aerosol Research,
    108 pp (Unpublished final research report to the Federal Ministry of
    Research and Technology) (in German).

    KÖNIG, H.P., KOCK, H., & HERTEL, R.F. (1989) [Analytical
    determination of platinum with regard to the car catalyst issue.]
    In: 5th Colloquium on Trace Analysis by Atomic Absorption
    Spectrometry, Konstanz, 3-7 April, 1989], Überlingen, Perkin-Elmer
    GmbH, pp. 647-656 (in German).

    KÖNIG, H.P., HERTEL, F.R., KOCH, W., & ROSNER, G. (in press)
    Determination of platinum emissions from a three-way catalyst
    equipped gasoline engine. Atmospheric environment.

    KRAFT, L.A., POLIDORO, J.P., CULVER, R.M., & HAHN, D.W. (1978)
    Intravas device studies in rabbits: II. Effect on sperm output,
    fertility and histology of the reproductive tract. Contraception,
    18: 239-251.

    KRAL, H. & PETER, K. (1977) [Method for the production of
    platinum(II)-nitrate and its use for platinum catalysts for the
    catalytic after-burning of automobile exhaust gas], Münich, German
    Patent Office (Patent No. 2233677) (in German). 

    KRITSOTAKIS, K. & TOBSCHALL, H.J. (1985) [Trace determination of
    platinum by differential-pulse anodic stripping voltammetry (DPASV)
    using the glassy carbon electrode.] Fresenius Z. anal. Chem., 320:
    156-158 (in German).

    LANGE, R.C., SPENCER, R.P., & HARDER, H.C. (1972) Synthesis and
    distribution of a radiolabeled antitumor agent: cis-
    diamminedichloroplatinum (II). J. nucl. Med., 13: 328-330.

    LAZNICKOVA, A., SEMECKY, V., LAZNICEK, M., ZUBER, V., KOKSAL, J., &
    KVETINA, J. (1989) Effect of oxoplatinum and CBDCA on renal
    functions in rats. Neoplasma, 36: 161-169.

    LECOINTE, P., MACQUET, J.P., BUTOUR, J.L., & PAOLETTI, C. (1977)
    Relative efficiencies of a series of square-planar platinum(II)
    compounds on Salmonella mutagenesis. Mutat. Res., 48: 139-144.

    LEE, D.S. (1983) Palladium and nickel in north-east Pacific waters.
    Nature(Lond.), 305: 47-48.

    LE HOUILLIER, R. & DE BLOIS, C. (1986) Alkyl cyanide medium for the
    determination of precious metals by atomic absorption spectrometry.
    Analyst, 111: 291-294.

    LELIEVELD, P., VAN DER VIJGH, J.F., VELDHUIZEN, R.W., VAN VELZEN,
    D., VAN PUTTEN, L.M., ATASSI, G., & DANGUY, A. (1984) Preclinical
    studies on toxicity, antitumour activity and pharmacokinetics of
    cisplatin and three recently developed derivatives. Eur. J. Cancer
    clin. Oncol., 20: 1087-1104.

    LEROY, A.F., WEHLING, M.L., SPONSELLER, H.L., FRIAUF, W.S., SOLOMON,
    R.E., & DEDRICK, R.L., (1977) Analysis of platinum biological
    materials by flameless atomic absorption spectrophotometry. Biochem.
    Med., 18: 184-191.

    LIFE SCIENCE RESEARCH (1980a) Pt(NH3)4Cl2; assessment of its
    mutagenic potential in histidine auxotrophs of  Salmonella
     typhimurium, Eye, Suffolk, Life Science Research, (Unpublished
    report No. 80/JOM001/005).

    LIFE SCIENCE RESEARCH (1980b) Pt(NH3)4Cl2; assessment of
    clastogenic action on bone marrow erythrocytes in the micronucleus
    test, Eye, Suffolk, Life Science Research (Unpublished report No.
    80/JOM004/182).

    LIFE SCIENCE RESEARCH (1980c) Pt(NH3)4Cl2; assessment of its
    mutagenic potential in  Drosophila melanogaster, using the sex-
    linked recessive lethal test, Eye, Suffolk, Life Science Research
    (Unpublished report No. 80/JOM002/260).

    LIFE SCIENCE RESEARCH (1981a) Potassium chloroplatinate: assessment
    of clastogenic action on bone marrow erythrocytes in the
    micronucleous test, Eye, Suffolk, Life Science Research (Unpublished
    report No. 81/JOM013/241).

    LIFE SCIENCE RESEARCH (1981b) TPC: assessment of its action on bone
    marrow cell chromosomes following sub-acute oral administration in
    the Chinese hamster, Eye, Suffolk, Life Science Research
    (Unpublished report No. 80/JOM008/497).

    LIFE SCIENCE RESEARCH (1981c) Potassium chloroplatinate(II):
    assessment of its mutagenic potential in  Drosophila melanogaster,
    using the sex-linked recessive lethal test, Eye, Suffolk, Life
    Science Research (Unpublished report No. 81/JOM012/474).

    LIFE SCIENCE RESEARCH (1982) Potassium chloroplatinate:
    investigation of effects on bone marrow chromosomes of the Chinese
    hamster after sub-acute oral administration, Eye, Suffolk, Life
    Science Research (Unpublished report).

    LINNETT, P.J. (1987) Platinum salt sensitivity. A review of the
    health aspects of platinum refining in South Africa. J. Mine Med.
    Off. Assoc. S. Afr., 63: 24-28.

    LIPPERT & BECK (1983) [Platinum complexes in cancer therapy.] Chem.
    Zeit, 6: 190-199 (in German).

    LIPPMAN, A.J., HELSON, C., HELSON, L., & KRAKOFF, I.H. (1973)
    Clinical trials of cis-diamminedichloroplatinum (NSC 119875). Cancer
    Chemother. Rep., 57: 191-200.

    LITTERST, C.L. (1981) Alterations in the toxicity of cis-
    dichlorodiammineplatinum-II and in tissue localization of platinum
    as a function of NaCl concentration in the vehicle of
    administration. Toxicol. appl. Pharmacol., 61: 99-108.

    LITTERST, C.L., TORRES, I.J., & GUARINO, A.M. (1976a) Plasma levels
    & organ distribution of platinum in the rat, dog & dogfish shark
    following single intravenous administration of cis-
    dichlorodiammineplatinum(II). J. clin. Hematol. Oncol., 7: 169-179.

    LITTERST, C.L., GRAM, T.E., DEDRICK, R.L., LEROY, A.F., & GUARINO,
    A.M. (1976b) Distribution and disposition of platinum following
    intravenous administration of cis-diamminedichloroplatinum(II) (NSC
    119875) to dogs. Cancer Res., 36: 2340-2344.

    LITTERST, C.L., LEROY, A.F., & GUARINO, A.M. (1979) Disposition and
    distribution of platinum following parenteral administration of cis-
    dichlorodiammineplatinum-II to animals. Cancer Treat. Rep., 63:
    1485-1492.

    LO, F.B., ARAI, D.K., & NAZAR, M.A. (1987) Determination of platinum
    in urine by inductively coupled plasma atomic emission spectrometry.
    J. anal. Toxicol., 11: 242-246.

    LOEBENSTEIN, J.R. (1982) Platinum-group metals. In: Minerals
    yearbook, centennial edition 1981. Vol. I. Metals and minerals,
    Washington, DC, US Department of the Interior, Bureau of Mines, pp.
    667-678.

    LOEBENSTEIN, J.R. (1988) Platinum-group metals. In: Minerals
    yearbook 1987. Vol. I. Metals and minerals, Washington, DC, US
    Department of the Interior, Bureau of Mines, pp. 689-700.

    LOWN, B.A., MORGANTI, J.B., STINEMAN, C.H., D'AGOSTINO, R.B., &
    MASSARO, E.J. (1980) Tissue organ distribution and behavior effects
    of platinum following acute and repeated exposure of the mouse to
    platinum sulfate. Environ. Health Perspect., 34: 203-212.

    MCGAHAN, M.C. & TYCZKOWSKA, K. (1987) The determination of platinum
    in biological materials by electrothermal atomic absorption
    spectroscopy. Spectrochim. Acta, 42B: 665-668.

    MAESSEN, F.J.M., KREUNING, G., & BALKE, J. (1986) Experimental
    control of the solvent load of inductively coupled argon plasmas and
    effects of the chloroform plasma load on their analytical
    performance. Spectrochim. Acta, 41B: 3-25.

    MALANCHUK, M., BARKELEY, N., CONTNER, G., RICHARDS, M., SLATER, R.,
    BURKART, J., & YANG, Y. (1974) Exhaust emissions from catalyst-
    equipped engines. In: Environmental Toxicology Research Laboratory,
    NERC, ed. Interim report: 1. Studies on toxicology of catalytic
    trace metal components. 2. Toxicology of automotive emissions with
    and without catalytic converters, Cincinnati, Ohio, Environmental
    Toxicology Research Laboratory, NERC, pp. 91-98.

    MARCZENKO, Z. & KUS, S. (1987) Spectrophotometric determination of
    traces of platinum in palladium with dithizone after matrix
    precipitation as a compound with ammonia and iodide. Anal. Chim.
    Acta, 196: 317-322.

    MARONE, C., OLSINA, R., & SALAS, O. (1981) Spectrometric
    determination of platinum in a spent reforming catalyst. Cron.
    chim., 66: 22-28.

    MARSH, K.C., STERNSON, L.A., & REPTA, A.J. (1984) Post-column
    reaction detector for platinum(II) antineoplastic agents. Anal.
    Chem., 56: 491-497.

    MASON, B. (1966) Principles of geochemistry, 3rd ed., New York, John
    Wiley & Sons, 310 pp.

    MASSARO, E.J., LOWN, B.A., MORGANTI, J.B., STINEMAN, C.H., &
    D'AGOSTINO, R.B. (1981) Sensitive biochemical and behavioral
    indicators of trace substance exposure: Part II. Platinum, Research
    Triangle Park, US Environmental Protection Agency, 3 pp
    (EPA-600/S1-81-015).

    MASSMANN, W. & OPITZ, H. (1954) [On platinum allergy.] Zentralbl.
    Arbeitsmed. Arbeitsschutz, 4: 1-4 (in German).

    MATUSIEWICZ, H. & BARNES, R.M. (1983) Determination of metal
    chemotherapeutic agents (Al, Au, Li, and Pt) in human body fluids
    using electrothermal vaporization with inductively coupled plasma
    atomic emission spectroscopy. In: Chemical toxicology and clinical
    chemistry of metals, Oxford, United Kingdom, International Union of
    Pure and Applied Chemistry, pp. 49-52.

    MERGET, R., SCHULTZE-WERNINGHAUS, G., MUTHORST, T., FRIEDRICH, W., &
    MEIER-SYDOW, J. (1988) Asthma due to the complex salts of platinum -
    a cross-sectional survey of workers in a platinum refinery. Clin.
    Allergy, 18: 569-580.

    MERGET, R., ZACHGO, W., SCHULTZE-WERNINGHAUS, G., BERGMANN, E.-M.,
    BOLM-AUDORFF, U., FRIEDRICH, W., BURY, A.H., & MEIER-SYDOW, J.
    (1990) [Quantitative skin test and inhalative provocation test in
    asthma associated with platinum compounds.] Pneumologie, 44: 226-228
    (in German).

    MERRIN, C.A. (1976) A new method to prevent toxicity with high doses
    of cis- diammineplatinum (therapeutic efficacy in previously treated
    widespread and recurrent testicular tumors). In: Proceedings of the
    12th Annual Meeting of the American Association for Cancer
    Research/American Society of Clinical Oncology, Toronto, 4-5 May,
    1976, Chicago, Illinois, American Society of Clinical Oncology, p.
    243 (ASCO Abstracts, No. C-26).

    MICHAEL, L.W., FINELLI, V.N., ELIA, V.J., PETERING, H.G., LEE, S.D.,
    & CAMPBELL, K.I. (1976) Interaction of metal binding agents from
    combustion products with trace metals. In: Proceedings of the
    Platinum Research Review Conference, Quail Roost Conference Center,
    Rougemont, North Carolina, 3-5 December 1975, Research Triangle
    Park, North Carolina, US Environmental Protection Agency, pp.
    37A-53A.

    MILLARD, H.T. (1987) Neutron activation determination of iridium,
    gold, platinum, and silver in geologic samples. J. radioanal. nucl.
    Chem., 113: 125-132.

    MOJSKI, M. & KALINOWSKI, K. (1980) Extractive separation of platinum
    from macroamounts of palladium using triphenylphosphine oxide and
    its successive spectrophotometric determination by the stannous
    chloride method. Microchem. J., 25: 507-513.

    MOLLMAN, J.E., HOGAN, W.M., GLOVER, D.J., & MCCLUSKEY, L.F. (1988)
    Unusual presentation of cis-platinum neuropathy. Neurology, 38:
    488-490.

    MOORE, W., Jr, HYSELL, D., CROCKER, W., & STARA, J. (1975a)
    Biological fate of a single adminstration of 191Pt in rats
    following different routes of exposure. Environ. Res., 9: 152-158.

    MOORE, W., Jr, HYSELL, D., HALL, L., CAMPBELL, K., & STARA, J.
    (1975b) Preliminary studies on the toxicity and metabolism of
    palladium and platinum. Environ. Health Perspect., 10: 63-71.

    MOORE, W., Jr, MALANCHUK, M., CROCKER, W., HYSELL, D., COHEN, A., &
    STARA, J.F. (1975c) Whole body retention in rats of different
    191Pt compounds following inhalation exposure. Environ. Health
    Perspect., 12: 35-39.

    MUELLER, B.J. & LOVETT, R.J. (1987) Salt-induced phase separation
    for the determination of metals as their diethyldithiocarbamate
    complexes by high-performance liquid chromatography. Anal. Chem.,
    59: 1405-1409.

    MURDOCH, R.D. & PEPYS, J. (1984) Immunological responses to complex
    salts of platinum. I. Specific IgE antibody production in the rat.
    Clin. exp. Immunol., 57: 107-114.

    MURDOCH, R.D. & PEPYS, J. (1985) Cross reactivity studies with
    platinum group metal salts in platinum-sensitised rats. Int. Arch.
    Allergy appl. Immunol., 77: 456-458.

    MURDOCH, R.D. & PEPYS, J. (1987) Platinum group metal sensitivity:
    reactivity to platinum group metal salts in platinum halide salt-
    sensitive workers. Ann. Allergy, 59: 464-469.

    MURDOCH, R.D., PEPYS, J., & HUGHES, E.G. (1986) IgE antibody
    responses to platinum group metals: a large-scale refinery survey.
    Br. J. ind. Med., 43: 37-43.

    MYASOEDOVA, G.V., ANTOKOL'SKAYA, I.I., & SAVVIN, S.B. (1985) New
    chelating sorbents for noble metals. Talanta, 32: 1105-1112.

    NAS (1977) Platinum-group metals, Washington, DC, National Academy
    of Science, 232 pp.

    NEUMÜLLER, O.-A. (1987) [Römpps lexicon on chemistry], Stuttgart, W.
    Keller & Co., p. 3256 (in German).

    NEWMAN-TAYLOR, A.J. (1981) Follow-up study of a group of platinum
    refinery workers, London, Brompton Hospital (Unpublished report).

    NYGREN, O., VAUGHAN, G.T., FLORENCE, T.M., MORRISON, G.M., WARNER,
    I., & DALE, L.S. (1990) Determination of platinum in blood by
    adsorptive voltammetry. Anal. Chem., 62(15): 1637-1640.

    PALLAS, J.E., Jr & JONES, J.B., Jr (1978) Platinum uptake by
    horticultural crops. Plant Soil, 50: 207-212.

    PARISH, W.E. (1970) Short-term anaphylactic IgG antibodies in human
    sera. Lancet, 2: 591-592.

    PARROT, J.L., HEBERT, R., SAINDELLE, A., & RUFF, F. (1969) Platinum
    and platinosis. Allergy and histamine release due to some platinum
    salts. Arch. environ. Health, 19: 685-691.

    PEPYS, J. (1983) Allergy of the respiratory tract to low molecular
    weight chemical agents. In: Born, G.V.R., Farah, A., Herken, H., &
    Welch, A.D., ed. Handbook of experimental pharmacology, Berlin,
    Springer-Verlag, pp. 163- 185.

    PEPYS, J., PICKERING, C.A.C., & HUGHES, E.G. (1972) Asthma due to
    inhaled chemical agents - complex salts of platinum. Clin. Allergy,
    2: 391-396.

    PEPYS, J., PARISH, W.E., CROMWELL, O., & HUGHES, E.G. (1979) Passive
    transfer in man and the monkey of type I allergy due to heat labile
    and heat stable antibody to complex salts of platinum. Clin.
    Allergy, 9: 99-108.

    PERA, M.F., Jr & HARDER, H.C. (1977) Analysis of platinum in
    biological material by flameless atomic absorption spectrometry.
    Clin. Chem., 23: 1245- 1249.

    PICKERING, C.A.C. (1972) Inhalation tests with chemical allergens:
    complex salts of platinum. Proc. R. Soc. Med., 65: 272-274.

    PINTO, A.L. & LIPPARD, S.J. (1985) Binding of the antitumour drug
    cis-diamminedichloroplatinum(II) (cisplatin) to DNA. Biochim.
    Biophys. Acta, 780: 167-180.

    POTTER, N.M. & LANGE, W.H. (1981) Determination of noble metals and
    their distribution in automotive catalyst materials. Am. Lab., 1:
    81-91.

    PRIESNER, D., STERNSON, L.A., & REPTA, A.J. (1981) Analysis of total
    platinum in tissue samples by flameless atomic absorption
    spectrophotometry. Elimination of the need for sample digestion.
    Anal. Lett., 14: 1255-1268.

    PURI, B.K., WASEY, A., KATYAL, M., & SATAKE, M. (1986)
    Spectrophotometric determination of platinum after extraction of its
    phenanthraquinone monoximate into molten naphtalene. Analyst, 111:
    743-745.

    RENNER, H. (1979)a [Platinum metals and alloys.] In: Bartholomé,
    E., Biekert, E., Hellmann, H., & Ley, H., ed. [Ullmann's
    encyclopedia of technical chemistry], 4th ed., Weinheim, Verlag
    Chemie, Vol. 18, pp. 697-705 (in German).

    RENNER, H. (1984)b [Platinum metals.] In: Merian, E., Geldmacher-
    von-Mallinckrodt, M., Machata, G., Nürnberg, H.W., Schlipköter,
    H.W., & Stumm, W., ed. [Metals in the environment. Distribution,
    analysis, and biological relevance], Weinheim, Verlag Chemie, pp.
    499-510 (in German).

    RICKEY, F.A., SIMMS, P.C., & MUELLER, K.A. (1979) PIXE analysis of
    water with detection limits in the ppb range. IEEE Trans. nucl.
    Sci., NS-26(1): 1347-1351.

    ROBERT, R.V.D., VAN WYK, E., & PALMER, R. (1971) Concentration of
    the noble metals by a fire-assay technique using sulphide as the
    collector, Johannesburg, South Africa, National Institute for
    Metallurgy (Report No. 1371).

    ROBERTS, A.E. (1951) Platinosis. A five-year study of the effects of
    soluble platinum salts on employees in a platinum laboratory and
    refinery. Arch. ind. Hyg. occup. Med., 4: 549-559.

    ROCKLIN, R.D. (1984) Determination of gold, palladium, and platinum
    at the parts-per-billion level by ion chromatography. Anal. Chem.,
    56: 1959-1962.

    ROSENBERG, B. (1975) Possible mechanisms for the antitumor activity
    of platinum coordination complexes. Cancer Chemother. Rep., 59(Part
    1): 589-598.

    ROSENBERG, B. (1980) Clinical aspects of platinum anticancer drugs.
    In: Metal ions in biological systems, New York, Basel, Marcel
    Dekker, Inc., Vol. 12, pp. 127-196.

    ROSENBERG, B. (1985) Fundamental studies with cisplatin. Cancer, 55:
    2303-2316.

                      

    a    English edition in preparation:
         RENNER, H. (in press) Platinum metals, compounds and alloys.
         In: Ullmanns Encyclopaedia of Industrial Chemistry, 5th ed.,
         Weinheim, VCH Verlagsgesellschaft.

    b    English edition in preparation:
         RENNER, H. & SCHMUCKLER, G. (in press) Platinum-group metals.
         In: Merian, E., ed. Metals and their compounds in the
         environment, Weinheim, VCH Verlagsgesellschaft. 

    ROSENBERG, B., VAN CAMP, L., & KRIGAS, T. (1965) Inhibition of cell
    division in  Escherichia coli by electrolysis products from a
    platinum electrode. Nature (Lond.), 205: 698-699.

    ROSENBERG, B., RENSHAW, E., VAN CAMP, L., HARTWICK, J., & DROBNIK,
    J. (1967) Platinum-induced filamentous growth in  Escherichia coli.
    J. Bacteriol., 93: 716-721.

    ROSHCHIN, A.V., VESELOV, V.G., & PANOVA, A.I. (1979) [Toxicology of
    platinum and platinum-group metals.] Gig. Tr. prof. Zabol., 9: 4-9
    (in Russian).

    ROSHCHIN, A.V., VESELOV, V.G., & PANOVA, A.I. (1984) Industrial
    toxicology of metals of the platinum group. J. Hyg. Epidemiol.
    Microbiol. Immunol., 28: 17-24.

    ROSNER, G. & HERTEL, R.F. (1986) [Health risk assessment of platinum
    emissions from automotive exhaust gas catalysts.] Staub-Reinhalt.
    Luft, 46: 281-285 (in German).

    ROSNER, G. & MERGET, R. (1990) Allergenic potential of platinum
    compounds. In: Dayan, A.D., Hertel, R.F., Heseltine, E., Kazantzis,
    G., Smith, E.M., & Van der Venne, M.T., ed. Immunotoxicity of metals
    and immunotoxicology, New York, London, Plenum Press, pp. 93-102.

    ROSNER, G., KÖNIG, H.P., KOCH, W., KOCK, H., HERTEL, R.F., & WINDT,
    H. (1991) [Engine test stand experiments to assess platinum uptake
    by plants.] Angew. Bot., 65: 127-132 (in German).

    RUFF, F., DI MATTEO, G., DUPUIS, J.P., HEBERT, R., & PARROT, J.-L.
    (1979) Réactions bronchopulmonaires et asthme dus au platine:
    incidences chez les ouvriers du platine en région parisienne. Rev.
    fr. Mal. Respir., 7: 206-208.

    SAFIRSTEIN, R., DAYE, M., & GUTTENPLAN, J.B. (1983) Mutagenic
    activity and identification of excreted platinum in human and rat
    urine and rat plasma after administration of cisplatin. Cancer
    Lett., 18: 329-338.

    SAINDELLE, A. & RUFF, F. (1969) Histamine release by sodium
    chloroplatinate. Br. J. Pharmacol., 35: 313-321.

    SANDHU (1979) Evaluation of the mutagenic potential of platinum
    compounds, Durham, North Carolina Central University, 36 pp
    (EPA-600/1-79-033).

    SCHACTER, L. & CARTER, S.K. (1986) The use of platinum to treat
    cancer. In: Precious metals: Proceedings of the 9th International
    Precious Metals Institute Conference, Lake Tahoe, Nevada, 9-12 June,
    1986, Allentown, Pennsylvania, International Precious Metals
    Institute, pp. 359-367.

    SCHLEMMER, G. & WELZ, B. (1986) Influence of the tube surface on
    atomization behavior in a graphite tube furnace. Fresenius Z. anal.
    Chem., 323: 703-709.

    SCHLÖGL, R., INDLEKOFER, G., & OELHAFEN, P. (1987) [Micro particle
    emission from combustion engines with exhaust gas purification - X-
    ray photoelectron spectroscopy in environmental analysis.] Angew.
    Chem., 99: 312-322 (in German).

    SCHULTZE-WERNINGHAUS, G., ROESCH, A., WILHELMS, O.-H., GONSIOR, E.,
    & MEIER-SYDOW, J. (1978) [Bronchial asthma due to occupational
    allergy of immediate type (I) to platinum salts.] Dtsch. med.
    Wochenschr., 23: 972-975 (in German).

    SCHULTZE-WERNINGHAUS, G., MERGET, R., ZACHGO, W., MUTHORST, T.,
    MAHLESA, D., LISSON, R., & BOLM-AUDORFF, U. (1989) [Platinum salts
    as occupational allergens - a review.] Allergologie, 12: 152-157 (in
    German).

    SCHUTYSER, P., GOVAERTS, A., DAMS, R., & HOSTE, J. (1977) Neutron
    activation analysis of platinum metals in airborne particulate
    matter. J. radioanal. Chem., 37: 651-660.

    SHEARD, C. (1955) Contact dermatitis from platinum and related
    metals. Arch. Dermatol. Syphilol., 71: 357-360.

    SHIMAZU, M. & ROSENBERG, B. (1973) A similar action to UV-
    irradiation and a preferential inhibition of DNA synthesis in  E.
     coli by antitumor platinum compounds. J. Antibiot., 26: 243-245.

    SIGHINOLFI, G.P., GORGONI, C., & MOHAMED, A.H. (1984) Comprehensive
    analysis of precious metals in some geological standards by
    flameless a.a. spectroscopy. Geostand. Newsl., 8: 25-29.

    SIGSBY, J. (1976) Measurement of platinum from catalyst-equipped
    vehicles, combustion and attrition products. In: Proceedings of the
    Platinum Research Review Conference, Quail Roost Conference Center,
    Rougemont, North Carolina, 3-5 December 1975, Research Triangle
    Park, North Carolina, US Environmental Protection Agency, pp.
    25A-31A.

    SINGH, N. & GARG, A.K. (1987) Spectrophotometric determination of
    platinum(IV) with potassium butyl xanthate. Analyst, 112: 693-695.

    SKINNER, P.E. (1989) Improvements in platinum plating. Platinum Met.
    Rev., 33(3): 102-105.

    SKOGERBOE, R.K., HANAGAN, W.A., & TAYLOR, H.E. (1985) Concentration
    of trace elements in water samples by reductive precipitation. Anal.
    Chem., 57: 2815-2818.

    SMITH, B.L., HANNA, M.L., & TAYLOR, R.T. (1984) Induced resistance
    to platinum in Chinese hamster ovary cells. J. environ. Sci. Health,
    A19: 267-298.

    SPERNER, F. & HOHMANN, W. (1976) Rhodium-platinum gauzes for ammonia
    oxidation. Platinum Met. Rev., 20: 12-20.

    STERNSON, L.A., REPTA, A.J., SHIH, H., HIMMELSTEIN, K.J., & PATTON,
    T.F. (1984) Disposition of cisplatin vs total platinum in animals
    and man. Dev. Oncol., 17: 126-137.

    STOCKMAN, H.W. (1983) Neutron activation determination of noble
    metals in rock: a rapid radiochemical separation based on tellurium
    coprecipitation. J. radioanal. Chem., 78: 307-317.

    STOKINGER, H.E. (1981) Platinum-group metals - platinum, Pt,
    palladium, Pd, iridium, Ir, osmium, Os, rhodium, Rh, ruthenium, Ru.
    In: Clayton, G.D. & Clayton, F.E., ed. Patty's industrial hygiene
    and toxicology, New York, John Wiley & Sons, pp. 1853-1871.

    SURAIKINA, T.I., ZAKHAROVA, I.A., MASHKOVSKII, Y., & FONSHTEIN, L.M.
    (1979) Study of the mutagenic action of platinum and palladium
    compounds on bacteria. Cytol. Genet. (USSR), 13: 50-54 (Translation
    from: Tsitol. i. Genet. 13: 486-491).

    SWIERENGA, S.H., GILMAN, J.P., & MCLEAN, J.R. (1987) Cancer risk
    from inorganics. Cancer Metastasis Rev., 6: 113-154.

    TAUBLER, J.H. (1977) Allergic response to platinum and palladium
    complexes - determination of no-effect level, Research Triangle
    Park, North Carolina, US Environmental Protection Agency, Office of
    Research and Development, Health Effects Research Laboratories, pp.
    1-81 (EPA/600/1-77-039).

    TAYLOR, R.T. (1976) Comparative methylation chemistry of platinum,
    palladium, lead and manganese, Research Triangle Park, North
    Carolina, US Environmental Protection Agency, Office of Research and
    Development, Health Effects Research Laboratories, 25 pp
    (EPA/600/1-76-016).

    TAYLOR, R.T. & HANNA, M.L. (1977) Methylation of platinum by methyl
    cobalamin. In: Drucker, H. & Wildung, R.E., ed. Biological
    implications of metals in the environment. Proceedings of the 15th
    Annual Hanford Life Science Symposium, Richland, Washington, 29
    September - 1 October, 1975, Springfield, Virginia, US Department of
    Commerce, National Technical Information Service, pp. 36-51 (Energy
    Research and Development Administration Symposium Series, Vol. 42).

    TAYLOR, R.T., HAPPE, J.A., HANNA, M., & WU, R. (1979) Platinum
    tetrachloride: mutagenicity and methylation with methylcobalamin. J.
    environ. Sci. Health, A14: 87-109.

    THEOPOLD, H.-M., ZOLLNER, M., SCHORN, K., SPAHMANN, J., & SCHERER,
    H. (1981) [Tissue reactions with platinum-iridium electrodes.]
    Laryng.-Rhinol., 60: 534-537 (in German).

    THOMPSON, B.C., RAYBURN, L.A., & HOLADAY, S.R. (1981) Detection of
    platinum in brain tissue by PIXE. IEEE Trans. nucl. Sci., NS-28:
    1396-1397.

    THOMPSON, J.J. & HOUK, R.S. (1986) Inductively coupled plasma mass
    spectrometric determination for multielement flow injection analysis
    and elemental speciation by reversed-phase liquid chromatography.
    Anal. Chem., 58: 2541-2548.

    TILLERY, J.B. & JOHNSON, D.E. (1975) Determination of platinum,
    palladium, and lead in biological samples by atomic absorption
    spectrophotometry. Environ. Health Perspect., 12: 19-26.

    TJIOE, P.S., VOLKERS, K.J., KROON, J.J., DE GOEIJ, J.J.M., & THE,
    S.K. (1984) Determination of gold and platinum traces in biological
    materials as a part of a multielement radiochemical activation
    analysis system. Int. J. environ. anal. Chem., 17: 13-24.

    TOBE, M.L. & KHOKHAR, A.R. (1977) Structure, activity, reactivity
    and solubility relationships of platinum diammine complexes. J.
    clin. Hematol. Oncol., 7: 114-137.

    TOBERT, A.J. & DAVIES, D.R. (1977) Effect of copper and platinum
    intrauterine devices on endometrial morphology and implantation in
    the rabbit. J. Reprod. Fertil., 50: 53-59.

    TÖLG, G. & ALT, F. (1990) [Contribution to an improvement in extreme
    trace analysis of metallic platinum in biotic and environmental
    material.] In: [Abstract prepared for the Third Conference of the
    BMFT Study Group on Precious Metal Emissions, 15 October, 1990],
    Dortmund, Institute of Spectrochemistry, 7 pp (Unpublished report)
    (in German).

    TSO, T.C., SOROKIN, T.P., & ENGELHAUPT, M.E. (1973) Effects of some
    rare elements on nicotine content of the tobacco plant. Plant
    Physiol., 51: 805-806.

    VALENTE, I.M., MINSKI, M.J., & PETERSON, P.J. (1982) Neutron
    activation analysis of noble metals in vegetation. J. radioanal.
    Chem., 71: 115-127.

    VAN DEN BERG, C.M.G. & JACINTO, G.S. (1988) The determination of
    platinum in sea water by adsorptive cathodic stripping voltammetry.
    Anal. Chim. Acta, 211: 129-139.

    VAN DER VIJGH, W.J.F., ELFERINK, F., & POSTMA, G.J. (1984)
    Determination of ethylenediamineplatinum(II) malonate in infusion

    fluids, human plasma and urine by high-performance liquid
    chromatography. J. Chromatogr., 310: 335-342.

    VENABLES, K.M., DALLY, M.B., NUNN, A.J., STEVENS, J.F., STEPHENS,
    R., FARRER, N., HUNTER, J.V., STEWART, M., HUGHES, E.G., & NEWMAN-
    TYLOR, A.J. (1989) Smoking and occupational allergy in workers in a
    platinum refinery. Br. Med. J., 299: 939-942.

    VENITT, S., CROFTON-SLEIGH, C., HUNT, J., SPEECHLEY, V., & BRIGGS,
    K. (1984) Monitoring exposure of nursing and pharmacy personnel to
    cytotoxic drugs: urinary mutation assays and urinary platinum as
    markers of absorption. Lancet, January 14: 74-77.

    VOGL, S.E., ZARAVINOS, T., & KAPLAN, B.H. (1980) Toxicity of cis-
    diamminedichloroplatinum II given in a two-hour outpatient regimen
    of diuresis and hydration. Cancer, 45: 11-15.

    VON BOHLEN, A., ELLER, R., KLOCKENKÄMPER, R., & TÖLG, G. (1987)
    Microanalysis of solid samples by total-reflection X-ray
    fluorescence spectrometry. Anal. Chem., 59: 2551-2555.

    VON HOFF, D.D., SCHILSKY, R., REICHERT, C.M., REDDICK, R.L.,
    ROZENCWEIG, M., YOUNG, R.C., & MUGGIA, F.M. (1979) Toxic effects of
    cis- dichlorodiammine-platinum(II) in man. Cancer Treat. Rep., 63:
    1527-1531.

    VRANA, O., KLEINWÄCHTER, V., & BRABEC, V. (1983) Determination of
    platinum in urine by differential pulse polarography. Talanta, 30:
    288-290.

    WANG, T.C. & TAN, C.K. (1987) Photodegradation of trichloroethylene
    in microheterogeneous aqueous systems. Environ. Int., 13: 359-362.

    WARD, J.M. & FAUVIE, K.A. (1976) The nephrotoxic effects of cis-
    diamminedichloroplatinum(II) (NSC-II 9875) in male F344 rats.
    Toxicol. appl. Pharmacol., 38: 535-547.

    WARD, J.M., YOUNG, D.M., FAUVIE, K.A., WOLPERT, M.K., DAVIS, R., &
    GUARINO, A.M. (1976) Comparative nephrotoxity of platinum cancer
    chemotherapeutic agents. Cancer Treat. Rep., 60: 1675-1678.

    WATERS, M.D., VAUGHAN, T.O., ABERNETHY, D.J., GARLAND, H.R., COX,
    C.C., & COFFIN, D.L. (1975) Toxicity of platinum (IV) salts for
    cells of pulmonary origin. Environ. Health Perspect., 12: 45-56.

    WEAST, R.C. & ASTLE, M.J. (1981) CRC handbook of chemistry and
    physics, 62nd ed. Boca Raton, Florida, CRC Press, pp. B-128-B-129.

    WELZ, B. & SCHLEMMER, G. (1987) Glassy carbon tubes for
    electrothermal atomic absorption spectrometry. Fresenius Z. anal.
    Chem., 327: 246-252.

    WEMYSS, R.B., & SCOTT, R.H. (1978) Simultaneous determination of
    platinum group metals and gold in ores and related plant materials
    by inductively-coupled plasma-optical emission spectrometry. Anal.
    Chem., 50: 1694-1697.

    WHITEHOUSE, M.W. & GARRETT, I.R. (1984) Heavy metal (Au, Pt)
    nephropathy: studies in normal and inflamed rats. In: Rainsford,
    K.D. & Velo, G.P., ed. Advances in inflammation research, New York,
    Raven Press, Vol. 6, pp 291-294.

    WIELE, H. & KUCHENBECKER, H. (1974) [Spectrophotometric
    determination of rhenium in the presence of platinum in bimetallic
    catalysts.] Erdöl, Kohle, Erdgas, Petrochem., 27: 90-92 (in German).

    WINDHOLZ, M. (1976) The Merck index, 9th ed., Rahway, New Jersey,
    Merck & Co., pp. 75, 977-991, 1114.

    WOLFE, G.W. (1979) PIXE analysis of atmospheric gases. IEEE Trans.
    nucl. Sci., NS-26: 1389-1391.

    WOOD, J.M., FANCHIANG, Y.-T., & RIDLEY, W.P. (1978) The biochemistry
    of toxic elements. Q. Rev. Biophys., 11: 467-479.

    WÜRFELS, M., JACKWERTH, E., & STOEPPLER, M. (1987) [On the problem
    of disturbances of inverse voltammetric trace analysis after
    pressure decomposition of biological samples.] Fresenius Z. anal.
    Chem., 329: 459-461 (in German).

    ZACHGO, W., MERGET, R., & SCHULTZE-WERNINGHAUS, G. (1985) [Proof of
    specific IgE against low molecular weight substances (platinum
    salts).] Atemweg. Lungenkr., 11: 267-268 (in German).

    ZOLOTOV, YU.A., PETRUKHIN, O.M., MALOFEEVA, G.I., MARCHEVA, E.V.,
    SHIRYAEVA, O.A., SHESTAKOV, V.A., MISKAR'YANTS, V.G., NEFEDOV, V.I.,
    MURINOV, YU.I., & NIKITIN, YU.E. (1983) Determinations of platinum
    metals by X-ray fluorescence, atomic emission and atomic absorption
    spectrometry after preconcentration with a polymeric thioether.
    Anal. Chim. Acta, 148: 135-157.

    RESUME

    1.  Identité, propriétés physiques et chimiques et méthodes
        d'analyse

         Le platine (Pt) est un métal noble, malléable et ductile de
    couleur blanc argent dont le numéro atomique est 78 et le poids
    atomique 195,9. On le trouve principalement à l'état naturel sous la
    forme des isotopes 194Pt (32,9 %), 195Pt (33,8 %) et 196Pt
    (25,3 %). Son état d'oxydation maximum est de +6, les états +2 et +4
    étant les plus stables.

         Le métal ne se corrode pas à l'air quelle que soit la
    température mais il peut être attaqué par les halogènes, les
    cyanures, le soufre et ses composés en fusion, les métaux lourds et
    les hydroxydes alcalins. L'attaque par l'eau régale ou par Cl2/HCl
    (acide chlorhydrique concentré dans lequel on fait barboter du
    chlore) produit l'acide hexachloroplatinique, H2(PtCl6), un
    important complexe du platine. Lorsqu'il est chauffé, le sel
    d'ammonium de l'acide hexachloroplatinique produit une substance
    grisâtre appelée "mousse de platine". La réduction d'une solution
    aqueuse d'acide hexachloro-platinique donne une poudre noire
    dispersée appelée "noir de platine".

         En solution aqueuse, les espèces chimiques dominantes sont des
    complexes. Beaucoup de ces sels complexes sont solubles dans l'eau
    en particulier ceux qui contiennent des ligands donneurs comme les
    halogènes ou l'azote. Le platine, comme les autres métaux du même
    groupe, ont une forte tendance à réagir sur les composés carbonés,
    en particulier les alcènes et les alcynes pour former des complexes
    de coordination de Pt(II).

         On dispose de diverses méthodes d'analyse pour le dosage du
    platine. La spectométrie d'absorption atomique et la spectroscopie
    d'émission en plasma sont très sélectives et spécifiques et
    constituent les méthodes de choix pour le dosage du platine dans les
    échantillons d'origine biologique ou environnementale. Dans
    différents milieux, on a obtenu avec ces méthodes des limites de
    détection de l'ordre du µg par kg ou par litre.

         La spectroscopie d'émission atomique en plasma induite par
    haute fréquence (PIHF) est supérieure à l'absorption atomique
    électrothermique du fait que les effets de matrice sont plus faibles
    et qu'il y a possibilité d'exécuter simultanément l'analyse d'autres
    éléments.

    2.  Sources d'exposition humaine et environnementale

         La concentration moyenne du platine dans la lithosphère, c'est-
    à-dire la croûte rocheuse de la terre, est estimée à 0,001-0,005
    mg/kg. On trouve le platine soit à l'état natif (métallique) soit en

    combinaison, dans un certain nombre de minéraux. Les sources
    d'importance économique se trouvent en République d'Afrique du Sud
    et en URSS. La teneur en platine de ces gisements est de 1-500
    mg/kg. Au Canada, les métaux du groupe du platine (platine,
    palladium, iridium, osmium, rhodium et ruthénium) sont présents dans
    les minerais sulfurés de cuivre et de nickel à une concentration
    moyenne de 0,3 mg/kg; l'affinage du cuivre et du nickel porte cette
    concentration à plus de 50 mg/kg. De petites quantités sont
    extraites de mines situées aux Etats-Unis d'Amérique, en Ethiopie,
    aux Philippines et en Colombie.

         La production minière mondiale des métaux du groupe du platine,
    constituée à 40-50% de platine, augmente régulièrement depuis les
    deux dernières décennies. En 1971, la production était de 127
    tonnes, dont 51-64 tonnes de platine. Depuis l'apparition du pot
    d'échappement catalytique, la production minière mondiale de ces
    métaux est passée à environ 270 tonnes (dont 108-153 tonnes de
    platine) en 1987. En 1989, la demande totale de platine dans le
    monde occidental était d'environ 97 tonnes.

         La principale utilisation du platine tient à ses propriétés
    catalytiques exceptionnelles. Les autres applications industrielles
    sont basées sur d'autres propriétés remarquables de ce métal, en
    particulier sa résistance à la corrosion chimique dans un grand
    intervalle de température, son point de fusion élevé, sa ductilité
    et sa grande résistance mécanique. Le platine est également utilisé
    en joaillerie et en art dentaire.

         Certains complexes du platine, en particulier le  cis-
    diamminedichloroplatine(II) ou cisplatine sont utilisés en
    thérapeutique.a

         On ne dispose pas de données sur les émissions de platine
    d'origine industrielle. Lors de l'utilisation de catalyseurs à base
    de platine, une certaine quantité de métal peut s'échapper dans
    l'environnement selon le type de catalyseur. Parmi les catalyseurs
    fixes utilisés dans l'industrie, seuls ceux qui servent à
    l'oxydation de l'ammoniac dégagent des quantités importantes de
    platine. 

                      

    a    Cette monographie traite spécialement du platine et de
         certains de ses dérivés importants du point de vue
         professionnel ou écologique. Une étude détaillée des effets
         toxiques du cisplatine en tant que médicament anti-cancéreux et
         de ses analogues chez l'homme et l'animal sortirait du cadre de
         cette série car il s'agit de produits utilisés essentiellement
         comme agents thérapeutiques. En outre leurs propriétés toxiques
         sont exceptionnelles comparées à celles des autres dérivés du
         platine. 

         Les catalyseurs de véhicules automobiles constituent des
    sources mobiles de platine. Selon des données limitées, l'attrition
    des anciens catalyseurs en granulés se situe entre 0,8 et 1,9 µg/par
    km parcouru. Environ 10% de ce platine est soluble dans l'eau.

         Les résultats fournis par des mesures au banc d'essai montrent
    que les pots catalytiques à trois voies utilisant des catalyseurs
    monolithiques de la nouvelle génération réduisent les émissions
    totales de platine d'un facteur de 100-1000 par rapport aux
    catalyseurs en granulés. A des vitesses simulées de 60, 100 et 140
    km/heure on a constaté que l'émission totale de platine se situait
    entre 3 et 39 ng/m3 dans les gaz d'échappement, ce qui correspond
    environ à 2-39 ng par kilomètre parcouru. Le diamètre aérodynamique
    moyen des particules émises variait, lors des différents essais,
    entre 4 et 9 µm. D'après quelques indices, on peut penser que la
    majeure partie du platine est émise sous forme de métal ou de
    particules oxydées en surface.

    3.  Transport, répartition et transformation dans l'environnement

         Les métaux du groupe du platine sont rares dans le milieu
    ambiant, comparativement aux autres éléments. Dans les zones très
    industrialisées, on peut trouver d'importantes quantités de platine
    dans les sédiments des cours d'eau. On pense que les matières
    organiques, par exemple les acides humiques et fulviques, se lient
    au platine, cette réaction étant sans doute facilitée par des
    conditions convenables de pH et de potentiel redox dans le milieu
    aquatique.

         Dans le sol, la mobilité du platine dépend du pH, du potentiel
    redox, de la teneur en chlore de l'eau qui imprègne le sol et de
    l'état naturel du platine dans les roches primaires. On estime que
    le platine n'est mobilisé que dans des conditions d'acidité extrême
    ou lorsque l'eau du sol est très riche en chlore.

         On a montré qu' in vitro certains complexes du platine(IV)
    pouvaient être méthylés en présence de platine(II) par la
    méthylcobalamine bactérienne dans des conditions abiotiques.

    4.  Concentrations dans l'environnement et exposition humaine

         La base de données relatives aux concentrations dans
    l'environnement est très limitée en raison de la très faible teneur
    de celui-ci en platine et des problèmes d'analyse que cela pose.

         Les concentrations de platine dans des échantillons d'air
    ambiant prélevés à proximité d'autoroutes aux Etats-Unis d'Amérique
    avant l'introduction du pot catalytique se situaient en dessous de
    la limite de détection de 0,05 pg/m3. Un certain nombre de données
    récentes en provenance d'Allemagne indiquent qu'à proximité des
    routes, des concentrations de platine dans l'air ambiant

    (échantillons de matière particulaire) vont de moins de 1 pg/m3 à
    13 pg/m3. Dans les zones rurales, ces concentrations étaient du
    même ordre de grandeur (moins de 0,6 à 1,8 pg/m3).

         A proximité immédiate des routes, les concentrations de platine
    dans l'air ambiant qui résultent de l'introduction de catalyseurs en
    granulés ont été évaluées à partir de modèles de dispersion et sur
    la base des données expérimentales relatives aux émissions. Etant
    donné que l'émission totale de platine d'un catalyseur de type
    monolithique est plus faible, sans doute d'un facteur allant de 100
    à 1000, que celle d'un catalyseur en granulés, les concentrations en
    platine provenant de ce type de catalyseur devraient être de l'ordre
    du picogramme au femtogramme par mètre cube.

         En divers endroits de Californie, on a trouvé, dans la
    poussière déposée sur les plantes à larges feuilles, des
    concentrations de 37-680 µg/kg de poids sec. Le nombre
    d'échantillons était limité mais les résultats montrent tout de même
    que le pot catalytique libère du platine dans l'environnement
    immédiat des routes.

         Des cultures de graminées ont été exposées dans des serres
    expérimentales pendant quatre semaines à des gaz d'échappement
    légèrement dilués provenant d'un moteur équipé d'un catalyseur à
    trois voies (vitesse simulée 100 km/heure): à la limite de détection
    de 2ng par gramme de poids sec, on n'a pas trouvé de platine.

         Des analyses effectuées sur les sédiments du lac Michigan ont
    montré que du platine s'y était déposé depuis une cinquantaine
    d'années à un rythme assez uniforme. Des concentrations dans des
    carottes de 1 à 20 cm étaient comprises entre 0,3 et 0,4 µg/kg de
    poids sec seulement. 

         On ne signale pas la présence de platine dans les eaux douces,
    en revanche de fortes concentrations (730 à 31 220 µg/kg de poids
    sec) ont été mesurées dans les sédiments d'un canal très pollué du
    Rhin en Allemagne. 

         Dans des échantillons de bois de  Pinus flexilis on a trouvé
    des concentrations de platine allant de 0 (non décelable) à 56 µg/kg
    (poids des cendres). Toutefois la teneur du sol voisin était du même
    ordre et ces données plutôt limitées n'indiquent aucune tendance à
    l'accumulation.

         Dans des échantillons isolés de végétaux provenant d'un sol
    extrêmement basique, on a mesuré des teneurs en platine allant de
    100 à 830 µg/kg (poids sec).

         Dans des échantillons d'eau de mer, on a relevé des
    concentrations allant de 37 à 332 pg/litre. Des carottes de sédiment
    prélevées dans le Pacifique oriental présentaient des teneurs en

    platine allant de 1,1 à 3 µg/kg (poids sec). La concentration la
    plus élevée (21,9 µg/kg) a été mesurée dans des sédiments océaniques
    à distance du littoral. Les algues macroscopiques marines présentent
    des teneurs en platine allant de 0,08 à 0,32 µg/kg de poids sec.

         Dans la population générale le taux de platine sanguin se situe
    entre 0,1 et 2,8 µg/litre. Dans le sérum de travailleurs exposés au
    platine de par leur activité professionnelle, on a relevé des
    concentrations de 150 à 440 µg/litre.

         La base de données relative aux concentrations de platine sur
    les lieux de travail est limitée. En raison de problèmes d'analyse,
    les données anciennes (0,9 à 1700 µg/m3) ne sont probablement pas
    fiables. Toutefois on peut déduire de ces données que l'exposition
    aux sels de platine était à l'époque plus forte que la limite
    d'exposition professionnelle de 2 µg/m3 qui est actuellement en
    vigueur dans la plupart des pays. Des études récentes effectuées sur
    les lieux de travail font état de concentrations qui sont, soit
    inférieures à la limite de détection de 0,05 µg/m3, soit comprises
    entre 0,08 et 0,1 µg/m3.

    5.  Cinétique et métabolisme

         Une seule exposition de 48 minutes par la voie respiratoire à
    du platine sous différentes formes chimiques (5-8 mg/m3) a montré
    que le 191Pt inhalé était rapidement éliminé de l'organisme. On
    observe ensuite une phase d'élimination plus lente au cours de la
    période suivant l'exposition. Dix jours après exposition à du
    191PtCl4, du 191Pt(SO4), du 191PtO2 et du 191Pt sous
    forme métallique, la rétention du 191Pt dans l'ensemble de
    l'organisme était respectivement de 1, 5, 8 et 6% de la dose
    initiale. La majeure partie du 191Pt a été éliminée des poumons
    par l'action de l'ascenseur mucociliaire puis avalée et excrétée
    dans les matières fécales (temps de demi-élimination, 24 h.). Une
    petite fraction du 191Pt a été décelée dans les urines, ce qui
    indique que la résorption est très faible au niveau des poumons et
    des voies digestives.

         Lors d'une étude sur la destinée comparée du 191PtCl4
    administré à des rats selon différentes voies à raison de 25uCi par
    animal, on a constaté que c'était la voie intraveineuse qui
    entraînait la rétention la plus forte, suivie par la voie
    intratrachéenne. Elle était minimale après administration par voie
    orale. Etant donné que seule une très faible partie du produit
    administré par voie orale a été résorbée, l'essentiel a traversé les
    voies digestives et a été excrété dans les matières fécales. Au bout
    de trois jours, on ne décelait plus dans l'ensemble de l'organisme
    que moins de 1% de la dose initiale. Après administration
    intraveineuse, le 191Pt se retrouvait en quantités pratiquement
    égales dans les matières fécales et dans l'urine. L'élimination
    était plus faible qu'après administration orale. Au bout de cette

    même période le taux de rétention dans l'ensemble de l'organisme
    était d'environ 65% et au bout de 28 jours il se situait encore à
    14% de la dose initiale. A titre de comparaison, au bout de ces deux
    intervalles de temps environ 22 et 8% respectivement de la dose
    initiale demeuraient dans l'organisme après administration intra-
    trachéenne.

         Les principaux sites d'accumulation sont les reins, le foie, la
    rate et les glandes surrénales. La forte quantité de 191Pt
    retrouvée dans les reins montre qu'une fois absorbé, le platine
    s'accumule en majeure partie dans ces organes d'où il est excrété
    dans l'urine. La quantité plus faible trouvée dans le cerveau montre
    que les ions platine ne traversent qu'en faible proportion la
    barrière hémo-méningée.

         Contrairement aux sels solubles dans l'eau, le PtO2, qui est
    insoluble, n'a été résorbé qu'en quantités très faibles, même après
    administration dans la nourriture à dose très élevée, c'est-à-dire
    correspondant à une dose totale de platine de 4308 mg par rat sur
    une période de quatre semaines.

         Qu'il s'agisse des sels simples ou du cisplatine, il est établi
    que l'élimination se fait en deux phases : une phase initiale rapide
    suivie d'une phase prolongée au cours de la période suivant
    l'exposition, et que rien ne permet de penser que les modalités de
    rétention soient très différentes. Toutefois le cisplatine est très
    stable dans les liquides extracellulaire en raison de la forte
    concentration en ions chlorure qui suppriment l'hydratation. Ainsi
    s'explique que cette substance soit excrétée presque entièrement
    sous forme inchangée. Contrairement au cas des sels simples, elle
    est excrétée principalement dans les urines.

    6.  Effets sur les mammifères de laboratoire et les systèmes
        d'épreuve in vitro

         La toxicité aiguë du platine est principalement fonction de la
    forme sous laquelle il se trouve. Les sels solubles sont beaucoup
    plus toxiques que les sels insolubles. Par exemple la toxicité par
    voie orale pour les rats (DL50) décroît dans l'ordre suivant:
    Na2[PtCl6] (25-50 mg/kg) > (NH4)2[PtCl6] (195-200 mg/kg)
    > PtCl4 (240 mg/kg) > Pt(SO4)2.4H2O (1010 mg/kg) >
    PtCl2(> 2000 mg/kg) > PtO2 (> 8000 mg/kg). En ce qui concerne
    ces deux derniers composés on n'a pas pu calculer la valeur de la
    DL50.

         Des tests cutanés pratiqués sur des lapins albinos ont montré
    que PtO2, PtCl2, K2[PtCl4], [Pt(NO2)2(NH3)2],
    Pt(C5H7O2)2 et  trans-[PtCl2(NH3)2] pouvaient être
    considérés comme non irritants. Par contre (NH4)2[PtCl6],
    (NH4)2[PtCl4], Na2[PtCl6], Na2[Pt(OH)6],

    K2[Pt(CN)4], [Pt(NH3)4]Cl2, et  cis-[PtCl2(NH3)2]
    se sont révélés irritants mais à des degrés divers.

         Des tests d'irritation oculaire ont montré que tous les
    composés testés avaient une action irritante. Le  trans-
    [PtCl2(NH3)2] ainsi que (NH4)2[PtCl4] se sont révélés
    corrosifs.

         De très sérieuses difficultés respiratoires ont été observées
    après injection intraveineuse de complexes chloroplatiniques à des
    cobayes et à des rats, vraisemblablement par suite d'une libération
    d'histamine d'origine non allergique. Cette libération aspécifique
    d'histamine complique l'interprétation des études sur l'animal et
    sur l'homme en ce qui concerne le diagnostic de la sensibilisation
    allergique. Après injection sous-cutanée et intraveineuse de
    Pt(SO4)2, trois fois par semaine pendant quatre semaines, on n'a
    pas constaté l'apparition d'un état allergique, à en juger d'après
    les résultats des épreuves cutanées effectuées sur des cobayes et
    des lapins, le transfert passif et les tests sur le coussinet
    plantaire de la souris. L'administration d'un complexe
    platine/albumine d'oeuf n'a pas non plus entraîné de sensibilisation
    chez les animaux de laboratoire.

         On a essayé sans succès de sensibiliser des rats Lister
    femelles avec du tétrachloroplatinate d'ammonium,
    (NH4)2[PtCl4] par administration intrapéritonéale,
    intramusculaire, intradermique, sous-cutanée, intratrachéenne, et
    dans le coussinet plantaire en présence de  Bordetella pertussis
    comme adjuvant; la sensibilisation a été évaluée par un test cutané
    direct, un test d'anaphylaxie cutanée passive (PCA) ou un test avec
    radio-allergo-absorbant (RAST). Toutefois le test PCA a donné un
    résultat positif après administration de conjugués
    platine/protéines.

         Chez des singes Cynomolgus  (Macaca fascicularis) exposés à de
    l'hexachloroplatinate de sodium, Na2[PtCl6] exclusivement en
    inhalations nasales à la dose de 200 µg par m3, 4 h par jour, deux
    fois par semaine pendant 12 semaines, on a observé un déficit
    pulmonaire sensiblement plus élevé que chez les témoins. Dans le cas
    de l'hexachloroplatinate d'ammonium, il a fallu exposer les animaux
    simultanément à de l'ozone (200 µ/m3) pour obtenir une
    hypersensibilisation cutanée et une hyperréactivité pulmonaire
    significatives.

         Des études sur des rats Sprague-Dawley mâles ont montré que des
    sels comme PtCl4 (182 mg/litre d'eau de boisson) et comme
    Pt(SO4).4H2O (248 mg/litre) n'affectaient pas le gain de poids
    au cours de la période d'observation de 4 semaines. En triplant la
    concentration de platine, il y a eu une réduction de 20% du gain de
    poids, mais seulement pendant la première semaine, parallèlement à
    une diminution de 20% de la prise de nourriture et de boisson.

         On ne dispose que de données expérimentales limitées à propos
    des effets du platine sur la reproduction, et plus particulièrement
    à propos de ses éventuels effets embryotoxiques et tératogènes. Le
    Pt(SO4)2 (200 mg Pt/kg) a provoqué la mise bas de souriceaux
    Swiss ICR de poids réduit du jour 8 au jour 45 du post-partum. Le
    principal effet de Na2[PtCl6] (20 mg Pt/kg) a consisté dans une
    réduction de l'activité de la progéniture lorsque les mères avaient
    été exposées le douzième jour de la gestation. Les fils et les
    feuilles de platine sont considérés comme inertes biologiquement et
    les effets nocifs constatés après implantation dans l'utérus de
    rattes et de lapines étaient probablement dus à la présence physique
    d'un corps étranger.

         Après administration à des rattes gravides d'une dose de
    191Pt égale à 25 microcuries par animal, le 18ème jour de la
    gestation, on a constaté un passage limité à travers la barrière
    foeto-placentaire.

         Plusieurs dérivés du platine se sont révélés mutagènes dans un
    certain nombre de systèmes bactériens. Lors d'études comparatives on
    a constaté que la mutagénicité du cisplatine était plusieurs fois
    supérieure à celle des autres composés. Des études  in vitro ont
    montré que, dans le système cellulaire mammalien CHO-HGPT,
    l'activité mutagène relative s'établissait selon la proportion
    100:9:0,3 respectivement pour les composés suivants:  cis-
    [PtCl2(NH3)2], K[PtCl3(NH3)], et [Pt(NH3)3Cl]Cl. La
    mutagénicité de K2[PtCl4] et du  trans-[PtCl2(NH3)] était
    marginale, tandis que le [Pt(NH3)4]Cl2 n'était pas mutagène.
    Les composés K2[PtCl4] et [Pt(NH3)4]Cl2 ne l'étaient pas
    non plus dans les tests suivants: mutation récessive léthale liée au
    sexe chez  Drosophila melanogaster, recherche de micronoyaux dans
    des cellules de souris et le test sur moelle osseuse de hamster. On
    ne possède de données expérimentales sur la cancérogénicité des
    dérivés du platine que dans le cas du cisplatine pour lequel les
    preuves d'une activité cancérogène chez l'animal sont suffisantes.
    Cependant le cisplatine et ses analogues font plutôt figure
    d'exception si on les compare aux autres dérivés du platine. Cela
    transparaît dans leur activité antitumorale, dont le mécanisme est
    très particulier. On pense que celle-ci est, semble-t-il, due à la
    formation de ponts intercaténaires qui ne se produit qu'en présence
    de l'isomèreciset pour une certaine position de la guanine. Les
    cellules tumorales ne sont plus en mesure de se répliquer, alors que
    les cellules normales conservent leur capacité de réplication après
    avoir réparé les lésions provoquées par le cisplatine.

    7.  Effets sur l'homme

         L'exposition aux sels de platine se limite essentiellement aux
    ambiances de travail, et plus précisément aux ateliers d'affinage du
    platine et aux unités de production de catalyseurs.

         Les composés principalement responsables de l'hyper-sensibilité
    aux sels de platinea sont l'acide hexachloroplatinique
    H2[PtCl6]et un certain nombre de sels comme
    l'hexachloroplatinate d'ammonium (NH4)2[PtCl6], le
    tétrachloroplatinate de potassium, K2[PtCl4], et le
    tétrachloroplatinate de sodium, Na2[PtCl4]. Les complexes dans
    lesquels il n'y a pas d'halogènes coordonnés au platine (complexes
    non halogénés), comme K2[Pt(NO2)4], [Pt(NH3)4]Cl2 et
    [Pt{(NH2)2CS}4]Cl2, de même que les complexes neutres comme
    le  cis-[PtCl2(NH3), ne sont pas allergéniques car ils
    réagissent avec les protéines pour former un antigène complet.

         Les symptômes de cette hypersensibilité sont les suivants:
    urticaire, dermatite de contact, ainsi qu'un certain nombre de
    troubles respiratoires, comme reniflement, essouflement, cyanose et
    asthme grave. La période de latence entre le premier contact avec
    des sels de platine et l'apparition des symptômes dure de quelques
    semaines à plusieures années. Après sensibilisation les symptômes
    ont tendance à s'aggraver aussi longtemps que les travailleurs sont
    exposés sur leur lieu de travail, mais ils disparaissent, en
    général, dès que cesse l'exposition. Toutefois, si une exposition de
    longue durée fait suite à la sensibilisation, les symptômes risquent
    de ne jamais disparaître complètement.

         Bien qu'il soit impossible de tirer des données publiées une
    relation dose-effet qui ne soit pas ambiguë, il semble que le risque
    d'apparition d'une hyper-sensibilité aux sels de platine soit en
    corrélation avec l'intensité de l'exposition. Le platine métallique
    ne semble pas être allergénique. A l'exception d'un cas unique de
    dermatite de contact, aucune réaction allergique n'a été signalée.

         Les manifestations cliniques de l'hypersensibilité aux sels de
    platine sont celles d'une véritable réaction allergique. Le
    mécanisme de cette réaction est du type 1 (médiation par les IgE).
    Sur la base d'épreuves  in vivo et  in vitro on pense que chez les
    sujets sensibles il se forme des anticorps IgE dirigés contre les
    complexes chloroplatiniques. Les sels de platine de faible masse
    moléculaire relative se comportent comme des haptènes qui se
    combinent aux protéines pour former des antigènes complets.

                      

    a    Le terme platinose n'est plus usité pour désigner les
         affections provoquées par les sels de platine, car il implique
         une fibrose pulmonaire chronique du type silicose. Il est
         préférable d'utiliser le terme allergie aux sels de platine, ou
         allergie aux composés du platine contenant des ligands
         halogénés réactifs ou mieux, hypersensibilité aux sels de
         platine. 

         Les tests cutanés avec des sels de platine dilués permettent de
    surveiller les réactions allergiques de manière reproductible,
    fiable, assez sensible et très spécifique. Pour les contrôles de
    routine en milieu professionnel on utilise les composés suivants:
    (NH4)2[PtCl6], Na2[PtCl6] et Na2[PtCl4]. Il n'existe
    pas d'épreuve  in vitro dont la sensibilité et la fiabilité
    approchent celles des tests cutanés. Des tests immunoenzymatiques ou
    par immunoallergosorption ont permis de mettre en évidence des
    anticorps IgE spécifiques dirigés contre les complexes chlorés du
    platine. Il y avait corrélation avec les résultats des tests cutanés
    mais l'utilisation du test RAST reste problématique en raison de son
    manque de spécificité.

         Les tests cutanés et l'épreuve RAST montrent qu'il n'existe
    qu'une faible réactivité croisée entre les sels de platine et les
    sels de palladium. Des réactions d'hypersensibilité à d'autres
    métaux du groupe du platine ont également été observées, mais
    seulement chez des personnes allergiques aux sels de platine.

         Le tabagisme, l'atopie et l'hyperréactivité pulmonaire
    aspécifique ont été associés à l'hypersensibilité aux sels de
    platine et pourraient être des facteurs prédisposants.

         En ce qui concerne la population générale, on manque de données
    sur l'exposition effective dans les pays où le pot catalytique est
    devenu obligatoire. Les concentrations dans l'air ambiant estimées
    d'après de nouvelles données sur les émissions et sur la base de
    modèles de dispersion sont probablement inférieures d'au moins un
    facteur 10 000 à la limite d'exposition professionnelle de 1 mg/m3
    adoptée par certains pays pour le platine total inhalable sous forme
    de poussières. Etant donné que le platine est très probablement
    présent dans les émissions sous forme métallique, le potentiel de
    sensibilisation du platine émis par les pots catalytiques est
    probablement très faible. Même si une partie du platine émis est
    soluble et potentiellement allergénique, la marge de sécurité par
    rapport à la limite d'exposition professionnelle pour les sels
    solubles de platine (2 µg/m3) serait d'au moins 2000.

         Lors d'une étude immunologique préliminaire, on a pratiqué des
    tests cutanés sur trois volontaires au moyen d'extraits de matières
    particulaires émises par des véhicules à moteur. On n'a pas observé
    de réponse positive.

         On ne dispose d'aucune donnée sur les risques de
    cancérogénicité pour l'homme attribuables au platine et à ses sels.
    Pour ce qui est du cisplatine les preuves de cancérogénicité sont
    jugées insuffisantes.

    8.  Effets sur d'autres organismes au laboratoire et dans la nature

         Les complexes simples du platine ont des effets bactéricides.
    En observant que les complexes neutres comme le cisplatine
    inhibaient sélectivement la division cellulaire sans réduction de la
    croissance chez diverses bactéries gram-positives mais aussi, et
    surtout, gram-négatives on a eu l'idée de les utiliser comme agents
    anticancéreux.

         On a observé qu'au sein d'un "microcosme" de laboratoire, la
    croissance des algues vertes du genre euglène était inhibée en
    présence d'acide hexachloroplatinique soluble aux concentrations de
    250, 500, et 750 µg/litre. Le cisplatine a provoqué une chlorose et
    un ralentissement de la croissance chez la jacinthe d'eau  Eichornia
     crassipesà la concentration de 2,5 mg/litre. 

         Après 3 semaines d'exposition à de l'acide
    hexachloroplatinique, H2[PtCl6], on a observé chez la daphnie
    une mortalité correspondant à une CL50 de 520 µg de Pt par litre.
    Aux concentrations de 14 et 82 µg/litre, la reproduction (nombre de
    jeunes daphnies) était réduite dans la proportion de 16 et 50%
    respectivement.

         Après exposition de saumons  (Oncorhyncus kisutch) à de
    l'acide tétrachloroplatinique pendant une brève période de temps
    dans des conditions statiques, on a observé que les valeurs de la
    CL50 étaient respectivement égales à 15,5, 5,2 et 2,5 mg Pt/litre
    au bout de 24, 48, et 96 h. On constatait, à la dose de 0,3
    mg/litre, une diminution globale de l'activité natatoire et du
    mouvement des opercules. Aux concentrations supérieures à cette
    valeur, des lésions apparaissaient au niveau des branchies et de
    l'organe olfactif. Les concentrations de 0,03 et 0,1 mg/litre
    étaient sans effet.

         Toutes les études consacrées aux effets du platine sur les
    plantes terrestres concernent uniquement les chlorures solubles. A
    des concentrations allant de 3.10-5 à 15.10-5 mol/kg (5,9-29,3
    mg/kg) il y a eu inhibition de la croissance de plants de haricots
    et de tomates en sol sableux. Neuf variétés horticoles en culture
    hydroponique ont présenté une réduction de leur poids à sec après
    adjonction de tétrachlorure de platine aux concentrations
    respectives de 0,057, 0,57, et 5,7 mg Pt/litre; il s'agissait de
    tomates, de poivrons, de fanes de navets et pour la concentration la
    plus élevée, de radis. A cette concentration les bourgeons et les
    feuilles immatures devenaient chlorotiques chez la plupart des
    espèces. En revanche, chez certaines espèces, le tétrachlorure de
    platine stimulait la croissance. Par ailleurs, la teneur la plus
    élevée en platine supprimait la transpiration, sans doute par
    accroissement de la résistance des stomates. On constatait également
    une stimulation de la croissance aux faibles teneurs en platine (0,5
    mg/litre), lorsque l'on ajoutait au milieu nutritif d'une graminée

    sud-africaine  (Setaria vertillata) dutétrachloroplatinate de
    potassium. Au bout de deux semaines, la racine la plus longue avait
    poussé de 65%. A la concentration utilisée, soit 2,5 mg Pt/litre, on
    observait des effets phytotoxiques tels que rabougrissement des
    racines et chlorose foliaire.

    RESUMEN

    1.  Identidad, propiedades físicas y químicas, métodos analíticos

         El platino (Pt) es un metal noble maleable, dúctil, de color
    plateado blanquecino; su número atómico es 78 y su peso atómico
    195,09. Sus isótopos naturales más abundantes son 194Pt (32,9%),
    195Pt (33,8%), y 196Pt (25,3%). En los compuestos de platino, el
    estado de oxidación máxima es +6; los estados +2 y +4 son los más
    estables.

         Aunque el metal no se corroe en el aire a ninguna temperatura,
    es sensible a los halógenos, los cianuros, el azufre, los compuestos
    de azufre fundentes, los metales pesados y los hidróxidos de
    álcalis. La digestión con agua regia o Cl2/HCl (ácido clorhídrico
    concentrado por el que se burbujea cloro) produce ácido
    hexacloroplatínico, H2[PtCl6], un importante complejo de
    platino. Cuando se calienta, la sal amónica del ácido
    hexacloroplatínico produce una esponja gris de platino. La reducción
    en solución acuosa produce un polvo dispersivo de color negro
    ("negro de platino").

         Las propiedades químicas de los compuestos del platino en
    solución acuosa se ven dominadas por los compuestos complejos.
    Muchas de las sales, particularmente las que llevan ligandos
    donadores de halógeno o de nitrógeno, son solubles en agua. El
    platino, al igual que los otros metales de su grupo, tiene una
    pronunciada tendencia a reaccionar con los compuestos del carbono,
    especialmente los alquenos y los alquinos, formando complejos de
    coordinación Pt(II).

         Existen diversos métodos analíticos para la determinación del
    platino. La espectrometría de absorción atómica (EAA) y la
    espectroscopia de emisión de plasma son sumamente selectivas y
    específicas y constituyen el método de elección para analizar el
    platino presente en muestras biológicas y medioambientales. Con esos
    métodos se han alcanzado en diversos medios límites de detección del
    orden de unos cuantos µg/kg o µg/litro.

         La espectroscopia de emisión atómica con plasma de argón
    acoplado por inducción es preferible a la EAA electrotérmica por sus
    menores efectos matriciales y por la posibilidad de analizar
    simultáneamente muchos elementos.

    2.  Fuentes de la exposición humana y ambiental

         Se calcula que la concentración media de platino en la
    litosfera o corteza terrestre es del orden de 0,001-0,005 mg/kg. El
    platino se encuentra en forma metálica o en varias formas minerales.
    Existen fuentes económicamente importantes en la República de
    Sudáfrica y en la URSS. El contenido de platino de esos depósitos es

    de 1-500 mg/kg. En el Canadá, los metales del grupo del platino
    (platino, paladio, iridio, osmio, rodio, rutenio) se encuentran en
    menas de sulfuro de cuproníquel con una concentración media de 0,3
    mg/kg, pero esa concentración supera los 50 mg/kg durante el afinado
    del cobre y el níquel. En los EE.UU., Etiopía, Filipinas y en
    Columbia se extraen pequeñas cantidades.

         La producción minera mundial de metales del grupo del platino,
    de la cual el 40-50% corresponde al platino, ha aumentado
    uniformemente durante los últimos 20 años. En 1971, la producción
    fue de 127 toneladas (51-64 toneladas de platino). A raíz de la
    introducción del catalizador de los gases de escape en los
    automóviles, la producción minera mundial de metales del grupo del
    platino aumentó hasta aproximadamente 270 toneladas (108-135
    toneladas de platino) en 1987. En 1989, la demanda total de platino
    en el mundo occidental fue de unas 97 toneladas.

         El uso principal del platino deriva de sus excepcionales
    propiedades catalíticas. Las demás aplicaciones industriales
    aprovechan otras notables propiedades, en particular la resistencia
    a la corrosión química en un amplio intervalo de temperaturas, su
    elevado punto de fusión, su gran resistencia mecánica y su buena
    ductilidad. El platino se usa asimismo en joyería y odontología. 

         Ciertos complejos de platino, en particular el  cis-
    diaminodicloroplatino(II) (cisplatino), tienen aplicaciones
    terapéuticas.a

         No se dispone de datos sobre las emisiones de platino al medio
    ambiente a partir de fuentes industriales. El uso de catalizadores
    con platino puede entrañar la liberación de ese elemento al medio
    ambiente, según el tipo de catalizador. De los catalizadores
    estacionarios utilizados en la industria, sólo los empleados para la
    oxidación del amoniaco emiten cantidades significativas de platino.

         Los catalizadores utilizados en automoción son fuentes móviles
    de platino. Se dispone de datos limitados que indican que el
    desgaste de platino a partir del antiguo catalizador en pastilla es

                      

    a    La presente monografía se ocupa específicamente del platino y
         de ciertos compuestos del platino de importancia ocupacional
         y/o ambiental. No entra en el ámbito restringido de la serie de
         Criterios de Salud Ambiental el estudio pormenorizado de los
         efectos tóxicos del fármaco anticanceroso cisplatino y de sus
         análogos en el hombre y los animales, puesto que esas
         sustancias se usan principalmente como agentes terapéuticos.
         Además, sus propiedades tóxicas son excepcionales en
         comparación con las de otros compuestos de platino.

    de 0,8 a 1,9 µg por km recorrido. Alrededor del 10% del platino es
    soluble en agua.

         Con la nueva generación de catalizadores de tipo monolítico,
    los resultados de experimentos en plataforma de pruebas de motores
    con un catalizador de tres vías indican que la emisión total de
    platino es inferior por un factor de 100-1000 a la producida en
    catalizadores en pastilla. Con velocidades simuladas de 60, 100 y
    140 km/h, se encontró que la emisión total de platino era de 3 a 39
    ng/m3 en los gases de escape, lo que corresponde a unos 2-39 ng
    por km recorrido. El diámetro aerodinámico medio de las partículas
    emitidas era de 4 a 9 µm en las distintas pruebas. Existen pruebas
    limitadas de que la mayor parte del platino emitido se encuentra en
    forma metálica o en partículas de superficie oxidada.

    3.  Transporte, distribución y transformación en el medio ambiente

         Los metales del grupo del platino son escasos en el medio
    ambiente en comparación con otros elementos. En zonas muy
    industrializadas, pueden encontrarse cantidades elevadas de platino
    en los sedimentos fluviales. Se supone que la materia orgánica, por
    ejemplo los ácidos húmicos y fúlvicos, enlaza platino, proceso que
    tal vez se vea favorecido por condiciones apropiadas de pH y de
    potencial redox en el medio acuático.

         En el suelo, la movilidad del platino depende del pH, el
    potencial redox, las concentraciones de cloruros en las aguas
    subterráneas y la forma en que se encuentra el platino en la roca
    primitiva. Se considera que el platino sólo será móvil en
    condiciones extremadamente ácidas o en aguas subterráneas con
    elevado contenido de cloro.

         En los sistemas de ensayo  in vitro se ha demostrado que
    algunos complejos de platino(IV), en presencia de platino(II),
    pueden sufrir metilación por la metilcobalamina bacteriana en
    condiciones abióticas.

    4.  Niveles medioambientales y exposición humana

         Se dispone de muy pocos datos en cuanto a las concentraciones
    medioambientales debido a los reducidos niveles de platino en el
    medio ambiente y los problemas analíticos que ello acarrea.

         Las concentraciones en muestras de aire obtenidas en las
    proximidades de autopistas en los Estados Unidos antes de la
    introducción del catalizador en los automóviles se encontraban por
    debajo del límite de detección de 0,05 pg/m3. Algunos datos
    obtenidos recientemente en Alemania indican que en las cercanías de
    las carreteras las concentraciones de platino en el aire (muestras
    particuladas) varían entre < 1 pg/m3 y 13 pg/m3. En zonas

    rurales, las concentraciones se encontraban en un orden de magnitud
    similar (< 0,6 a 1,8 pg/m3).

         Las concentraciones de platino en el aire cercano a carreteras
    tras la introducción de los catalizadores de pastilla en los
    automóviles se han calculado basándose en modelos de dispersión y
    datos experimentales de emisión. Las concentraciones estimadas de
    platino en las carreteras y en las zonas próximas variaron entre
    0,005 y 9 ng/m3 para el platino total. Puesto que la emisión total
    de platino en un catalizador de tipo monolítico es inferior,
    probablemente por un factor de 100 a 1000, que en un catalizador de
    pastilla, las concentraciones de platino emitidas en ese tipo de
    catalizador se encontrarían en el margen de picogramos a femtogramos
    por m3.

         En el polvo depositado en las plantas de hoja ancha que bordean
    las carreteras en distintos lugares de California, se detectaron
    concentraciones de 37-680 µg por kg de peso seco. Aunque el número
    de muestras era limitado, los resultados indican que los
    catalizadores de automóviles liberan platino al medio ambiente
    próximo a las carreteras.

         En experimentos en cámara vegetal, los cultivos herbáceos
    expuestos durante cuatro semanas a gases de escape ligeramente
    diluidos procedentes de un motor equipado con un catalizador de 3
    vías (velocidad simulada: 100 km/h) no contenían platino con un
    límite de detección de 2 ng/g de peso seco.

         Los estudios de las concentraciones de platino en sedimentos
    del Lago Michigan llevaron a la conclusión de que el platino se ha
    ido depositando en ellos durante los últimos 50 años a una velocidad
    uniforme. Las concentraciones en calas de sedimento de 1 a 20 cm
    variaron sólo entre 0,3 y 0,43 µg/kg de peso seco.

         Mientras que no se han comunicado niveles de platino en aguas
    dulces, se han encontrado elevadas concentraciones (730 a 31 220
    µg/kg de peso eco) en los sedimentos de un canal de corta sumamente
    contaminado en el río Rin (Alemania).

         En muestras de  Pinus flexilisse encontraron niveles de
    platino entre el límite de detección y 56 µg/kg (peso de ceniza). No
    obstante, el contenido de los suelos adyacentes se encontraba entre
    los mismos valores; estos datos limitados no indicaban tendencia
    alguna de acumulación.

         En muestras aisladas de vegetales procedentes de un suelo
    ultrabásico, se encontraron niveles de platino de 100-830 µg/kg
    (peso seco).

         En muestras de agua marina se han encontrado entre 37 y 332
    pg/litro. En calas de sedimento obtenidas en el Pacífico oriental,

    las concentraciones de platino variaron entre 1,1 y 3 µg/kg (peso
    seco). La concentración más elevada (21,9 µg por kg) se encontró en
    sedimentos oceánicos alejados del litoral. En macroalgas marinas se
    han encontrado concentraciones de platino entre 0,08 y 0,32 µg/kg de
    peso seco.

         En la población general se han medido niveles sanguíneos de
    platino de 0,1 a 2,8 µg/litro. En suero de trabajadores expuestos
    por su profesión, se han comunicado niveles de 150 a 440 µg por
    litro.

         Se dispone de datos limitados sobre las concentraciones de
    platino en el lugar de trabajo. Es probable que los datos antiguos
    (0,9 a 1700 µg/m3) no sean de fiar debido a las deficiencias del
    análisis. No obstante, esos datos permiten suponer que el nivel de
    exposición a sales de platino era superior al límite de exposición
    profesional de 2 µg/m3 adoptado actualmente en la mayoría de los
    países. En recientes estudios realizados en los lugares de trabajo,
    se han medido concentraciones inferiores al límite de detección de
    0,05 µg/m3 o entre 0,08 y 0,1 µg/m3.

    5.  Cinética y metabolismo

         Tras una exposición única por inhalación (48 minutos) a
    distintas formas químicas del platino (5-8 mg/m3), la mayor parte
    del 191Pt inhalado fue rápidamente eliminado del organismo. A
    continuación se observó una fase más lenta de eliminación durante el
    resto del periodo posterior a la exposición. A los diez días de la
    exposición a 191PtCl4, 191Pt(SO4)2, 191PtO2, y 191Pt
    metálico, la retención total de 191Pt por el organismo fue de
    aproximadamente 1, 5, 8 y 6%, respectivamente, de la carga inicial
    del organismo. La mayor parte del 191Pt eliminado de los pulmones
    por mecanismos mucociliares e ingerido se excretó con las heces
    (semivida: 24 h). Una pequeña fracción del 191Pt se detectó en la
    orina, lo que indica que la absorción en los pulmones y el tracto
    gastrointestinal fue muy reducida.

         En un estudio comparativo sobre el destino del 191PtCl4 en
    ratas (25 µCi/animal) tras la exposición por distintas vías, la
    retención fue máxima tras la administración intravenosa, seguida por
    la exposición intratraqueal. La mínima se registró tras la
    administración oral. Puesto que sólo fue absorbida una cantidad
    minúscula del 191PtCl4 administrada por vía oral, la mayoría
    atravesó el tracto gastrointestinal y se excretó con las heces. Al
    cabo de tres días, menos del 1% de la dosis inicial se detectó en
    todo el cuerpo. Tras la administración intravenosa, el 191Pt se
    excretó en cantidades casi iguales tanto en las heces como en la
    orina. La eliminación fue más lenta que en el caso de la
    administración oral. A los tres días la retención en todo el
    organismo era de alrededor del 65%, y al cabo de 28 días aún era del
    14% de la dosis inicial. A título de comparación, al cabo de

    periodos iguales alrededor del 22% y del 8%, respectivamente,
    quedaron retenidos por el organismo tras la administración
    intratraqueal.

         Los principales lugares de depósito son el riñón, el hígado, el
    bazo y las glándulas suprarrenales. La elevada cantidad de 191Pt
    encontrada en el riñón demuestra que una vez que el platino es
    absorbido, la mayor parte se acumula en él y se excreta en la orina.
    El nivel más bajo en el cerebro sugiere que los iones de platino
    atraviesan la barrera hematoencefálica sólo en grado limitado.

         A diferencia de las sales hidrosolubles, el PtO2, que es
    insoluble, sólo fue captado en cantidades insignificantes a pesar de
    que la sal se administró con la dieta en concentraciones sumamente
    elevadas, que representaron un consumo total de platino de 4308 mg
    por rata durante el periodo de cuatro semanas.

         Tanto en el caso de las sales simples de platino como en el
    cisplatino, se ha determinado que existe un periodo de eliminación
    rápida seguido de una fase prolongada de eliminación durante el
    resto del periodo posterior a la exposición, y que no existen
    pruebas de que los perfiles de retención sean notablemente
    diferentes. No obstante, el cisplatino es sumamente estable en los
    fluidos extracelulares debido a que las elevadas concentraciones de
    cloruro suprimen la hidratación. Ello explica que se excrete
    principalmente en la forma no alterada. Su excreción, a diferencia
    de la de las sales simples de platino, tiene lugar principalmente
    con la orina.

    6.  Efectos en mamíferos de laboratorio y en sistemas de ensayo in
        vitro

         La toxicidad aguda del platino depende principalmente de la
    especie de platino. Los compuestos solubles son mucho más tóxicos
    que los insolubles. Por ejemplo, la toxicidad por vía oral en la
    rata (valores de la LD50) disminuyo en el orden siguiente:
    Na2[PtCl6] (25-50 mg/kg) > (NH4)2[PtCl6] (195-200 mg/kg)
    > PtCl4 (240 mg/kg) > Pt(SO4)2.4H2O (1010 mg/kg) >
    PtCl2 (> 2000 mg/kg) > PtO2 (> 8000 mg/kg). No pudo alcularse
    la DL50 correspondiente a los dos últimos compuestos.

         En las pruebas cutáneas realizadas en conejos albinos, los
    compuestos PtO2, PtCl2, K2[PtCl4], [Pt(NO2)2(NH3)2],
    Pt(C5H7O2)2 y  trans-[PtCl2(NH3)2] se clasificaron
    como no irritantes. Los compuestos (NH4)2[PtCl6],
    (NH4)2[PtCl4], Na2[PtCl6], Na2[Pt(OH)6],
    K2[Pt(CN)4], [Pt(NH3)4]Cl2, y  cis-[PtCl2(NH3)2]
    resultaron irritantes en diversos grados. 

         En los ensayos de irritación ocular todos los compuestos de
    platino ensayados dieron resultados positivos. El  trans-
    [PtCl2(NH3)2] y el (NH4)2[PtCl4] resultaron ser
    corrosivos.

         Tras la inyección intravenosa de complejos de cloroplatino en
    cobayos y ratas, se observaron dificultades respiratorias intensas,
    probablemente debidas a la liberación analérgica de histamina. Esta
    liberación inespecífica de histamina ha complicado la interpretación
    de los estudios en animales y en el hombre en relación con el
    diagnóstico de la sensibilización alérgica.

         Tras la inyección subcutánea e intravenosa de Pt(SO4)2 tres
    veces a la semana durante cuatro semanas, no se observó inducción de
    un estado alérgico, de acuerdo con las pruebas cutáneas (cobayos y
    conejos), la transferencia pasiva y los ensayos en la almohadilla
    plantar (ratones). La administración del complejo platino-huevo-
    albúmina tampoco sensibilizó a los animales de experimentación.

         No se consiguió sensibilizar a hembras de rata encapuchada de
    Lister con la sal libre de tetracloroplatinato de amonio,
    (NH4)2[PtCl4], aplicada por las vías intraperitoneal,
    intramuscular, intradérmica, subcutánea, intratraqueal y por la
    almohadilla plantar, conBordetella pertussisw como coadyuvante, de
    acuerdo con los resultados de la prueba cutánea directa, la prueba
    de anafilaxis cutánea pasiva o un ensayo de radioalergosorbencia
    (RAST). No obstante, se han comunicado resultados positivos de
    anafilaxis cutánea pasiva con conjugados platino-proteína.

         En monos Cynomolgus  (Macaca fasicularis) expuestos a
    hexacloroplatinato de sodio, Na2[PtCl6], por inhalación
    exclusivamente nasal de una concentración de 200 µg/m3 wdurante 4
    horas al día, dos veces a la semana durante 12 semanas, se
    observaron insuficiencias pulmonares significativamente mayores que
    en los animales testigo. Con la exposición a hexacloroplatinato de
    amonio, (NH4)2[PtCl6], sólo la exposición simultánea a ozono
    (2000 µg/m3) produjo hipersensibilidad cutánea e hiperreactividad
    pulmonar significativas.

         En estudios de administración oral a machos de rata Sprague-
    Dawley, las sales PtCl4 (182 mg/l de agua de bebida) y
    Pt(SO4)2.4H2O (248 mg/litro) no ejercieron efecto alguno en la
    adquisición normal de peso durante el periodo de observación de 4
    semanas. Al triplicar la concentración de platino, la adquisición de
    peso se redujo en un 20% sólo durante la primera semana,
    paralelamente a una disminución del 20% del consumo de alimento y
    agua. 

         Sólo se dispone de datos experimentales limitados sobre los
    efectos del platino en la reproducción, la embriotoxicidad y la
    teratogenicidad. El Pt(SO4)2 (200 mg Pt/kg) redujo el peso de

    las crías en ratones suizos ICR desde el día 8 al 45 después del
    parto. El principal efecto del Na2[PtCl6] (20 mg Pt/kg) fue un
    nivel de actividad menor en las crías de madres expuestas el duo-
    décimo día de gestación. Se considera que el alambre y las láminas
    de platino sólido son biológicamente inertes; los efectos adversos
    observados a raíz de la implantación en el útero de ratas y ratones
    se debieron probablemente a la presencia física de un objeto
    extraño.

         Tras la administración intravenosa de 191PtCl4 a ratas
    gestantes (25 µCi/animal) el día 18 de la gestación, una cantidad
    limitada del compuesto atravesó la barrera placentaria.

         Se ha observado que varios compuestos de platino son
    mutagénicos en diversos sistemas bacterianos. En estudios
    comparativos, el cisplatino era varias veces más mutagénico que
    otras sales de platino ensayadas. En estudios realizados  in vitro 
    con células de mamífero (sistema CHO-HGPT), la actividad mutagénica
    relativa de los compuestos  cis-[PtCl2(NH3)2],
    K[PtCl3(NH3)] y [Pt(NH3)3Cl]Cl fue 100:9:0,3. La
    mutagenicidad del K2[PtCl4] y el  trans-[PtCl2(NH3)2] era
    marginal, mientras que el [Pt(NH3)4]Cl2 no era mutagénico. No
    se observó actividad mutagénica en los compuestos K2[PtCl4] y
    [Pt(NH3)4]Cl2, en el ensayo de letalidad recesiva ligada al
    sexo en  Drosophila melanogaster, en un ensayo de micronúcleo de
    ratón ni en el ensayo en médula ósea de hámster chino.

         Salvo en el caso del cisplatino, no se dispone de datos
    experimentales relativos a la carcinogenicidad del platino y sus
    compuestos. Existen prueba suficientes de la carcinogenicidad del
    cisplatino en los animales. No obstante, el cisplatino y sus
    análogos son excepcionales en comparación con otros compuestos de
    platino; ello se refleja en su mecanismo característico de actividad
    anti-tumoral. La constitución de enlaces cruzados entre las hebras
    de ADN, formados sólo por el isómero cis en determinada posición de
    la guanina, se considera el motivo de esa actividad antitumoral.
    Parece ser que la replicación del ADN es defectuosa en las células
    cancerosas, mientras que en las normales las lesiones causadas por
    el cisplatino en la guanina se reparan antes de la replicación. 

    7.  Efectos en el ser humano

         La exposición a sales de platino se limita principalmente al
    medio ocupacional, en particular a las refinerías de platino
    metálico y las plantas de fabricación de catalizadores.

         Los princiaples compuestos responsables de la hiper-
    sensibilidad a las sales de platino son el ácido hexacloroplatínico,
    H2[PtCl6], y algunas sales cloradas como el hexacloroplatinato
    de amonio, (NH4)2[PtCl6], el tetracloroplatinato de potasio,
    K2[PtCl4], el hexacloroplatinato de potasio, K2[Pt6] y el

    tetracloroplatinato de sodio, Na2[PtCl4].a Los complejos en
    los que no hay ligandos halógenos coordinados al platino ("complejos
    no halogenados"), como el K2[Pt(NO2)4], [Pt(NH3)4]Cl2 y
    [Pt{(NH2)2CS}4]Cl2, así como los complejos neutros como el
     cis-[PtCl2(NH3)2], no son alergénicos, puesto que
    probablemente no reaccionan con proteínas para formar un antígeno
    completo.

         Entre los signos y síntomas de hipersensibilidad figuran
    urticaria, dermatitis de contacto de la piel, y trastornos
    respiratorios que pueden ir desde estornudos, disnea y cianosis a
    crisis graves de asma. El periodo de latencia desde el primer
    contacto con el platino hasta la aparición de los primeros síntomas
    varía desde unas pocas semanas a varios años. Una vez que la
    sensibilización está establecida, los síntomas tienden a empeorar
    durante el tiempo que los individuos sigan expuestos en el lugar de
    trabajo, pero suelen desaparecer al cesar la exposición. No
    obstante, si se produce una exposición prolongada después de la
    sensibilización, es posible que los individuos nunca queden
    completamente exentos de síntomas. 

         Aunque a partir de los datos disponibles no puede deducirse una
    relación inequívoca entre la concentración y el efecto, el riesgo de
    desarrollar sensibilidad a las sales de platino parece guardar
    relación con la intensidad de la exposición. El platino metálico
    parece no ser alergénico. A excepción de un solo caso comunicado de
    supuesta dermatitis de contacto provocada por un anillo "de
    platino", no se han notificado reacciones alérgicas.

         Las manifestaciones clínicas de la hipersensibilidad a las
    sales de platino reflejan una auténtica respuesta alérgica. El
    mecanismo parece ser una respuesta de tipo I (medida por la IgE). La
    posibilidad de que se desarrollen anticuerpos IgE a complejos de
    cloruro de platino en personas sensibles se ha supuesto basándose en
    los ensayos  in vivo e  in vitro. Se cree que las sales de platino
    de baja masa molecular relativa actúan como haptenos que se combinan
    con las proteínas séricas para formar el antígeno completo.

                      

    a    Se ha abandonado el término "platinosis" para describir las
         enfermedades relacionadas con las sales de platino, puesto que
         implica una enfermedad pulmonar fibrosante crónica del tipo de
         la silicosis. En su lugar, se han utilizado "alergia a las
         sales de platino", "alergia a los compuestos de platino que
         contienen ligandos halógenos reactivos" e "hipersensibilidad a
         sales de platino" (HSP), siendo preferible el último. 

         Las pruebas de punción cutánea con concentraciones diluidas de
    complejos solubles de platino parecen proporcionar indicadores
    biológicos de la alergenicidad reproducibles, fiables,
    razonablemente sensibles y sumamente específicos. Los compuestos
    utilizados para las pruebas periódicas de detección de alergias en
    los trabajadores expuestos son (NH4)2[PtCl6], Na2[PtCl6] y
    Na2[PtCl4]. La sensibilidad y fiabilidad de las pruebas de
    punción cutánea no tienen igual en ninguno de los ensayos  in vitro
    disponibles. En los inmunoensayos enzimáticos y las pruebas de
    radioalergosorbencia (RAST) se han encontrado anticuerpos IgE
    específicos de los complejos del cloruro de platino. Aunque se
    comunicó la existencia de correlación con los resultados de las
    pruebas de punción cutánea, la aplicabilidad de la prueba RAST para
    los exámenes de detección se puso en tela de juicio a causa de su
    falta de especificidad.

         Se ha encontrado una reactividad cruzada limitada entre las
    sales de platino y de paladio en los ensayos cutáneos y el RAST. Las
    reacciones a los metales del grupo del platino distintos de éste
    sólo se han observado en individuos sensibles a las sales de
    platino.

         El tabaquismo, la atopia y la hiperreactividad pulmonar
    inespecífica se han asociado a la hipersensibilidad a las sales de
    platino y pueden ser factores predisponentes.

         En cuanto a la población general, no se dispone de bastantes
    datos sobre la situación real en materia de exposición en los países
    en los que se ha introducido el catalizador en los automóviles. Las
    concentraciones atmosféricas posibles, calculadas teniendo en cuenta
    algunos datos de emisión y modelos de dispersión, son inferiores por
    un factor al menos de 10 000 al límite de exposición ocupacional de
    1 mg/m3 adoptado por algunos países para el platino metálico como
    polvo inhalable total. Puesto que el platino emitido se encuentra
    con toda probabilidad en forma metálica, el potencial de
    sensibilización de las emisiones de platino a partir de los
    catalizadores de los automóviles es probablemente muy bajo. Aunque
    parte del platino emitido fuera soluble y potencialmente alergénico,
    el margen de seguridad respecto del límite de exposición profesional
    para las sales de platino solubles (2 µg/m3) sería de al menos
    2000.

         En un estudio inmunológico preliminar, se ensayaron extractos
    de muestras particuladas procedentes de escapes de automóviles en
    tres voluntarios humanos mediante una prueba de punción cutánea. No
    se obtuvo respuesta positiva.

         No se dispone de datos para evaluar el riesgo carcinogénico del
    platino ni de sus sales para el ser humano. En cuanto al cisplatino,
    las pruebas disponibles en materia de carcinogenicidad humana se
    consideran insuficientes.

    8.  Efectos en otros organismos en el laboratorio y sobre el terreno

         Los complejos simples de platino tienen efectos bactericidas.
    El descubrimiento de que los complejos neutros como el cisplatino
    inhiben selectivamente la división celular sin reducir el
    crecimiento celular de diversidad de bacterias gram-positivas y
    especialmente gram-negativas ha llevado a su aplicación en medicina
    como agentes antitumorales.

         El crecimiento y la cosecha del alga verde  Euglena gracilis
    fueron inhibidos por el ácido hexacloroplatínico soluble (250, 500 y
    750 µg/litro) en un "microcosmos" experimental. El cisplatino
    ocasionó clorosis y retraso del crecimiento en el jacinto acuático
     Eichhornia crassipes con una concentración de 2,5 mg/litro.

         En el invertebrado  Daphnia magna, la exposición durante tres
    semanas a ácido hexacloroplatínico (H2[PtCl6]), dio un valor de
    CL50 de 520 µg Pt por litro. Con concentraciones de 14 y 82
    µg/litro, se observaron efectos en la reproducción que se
    manifestron en reducciones del 16 y el 50%, respectivamente, del
    número total de crías.

         Tras la exposición a corto plazo al ácido tetracloroplatínico,
    H2[PtCl4], en un bioensayo estático, los valores de la CL50 a
    las 24, 48 y 96 horas fueron de 15,5, 5,2 y 2,5 mg Pt/litro,
    respectivamente, en el salmón  Oncorhynchus kisutch. Con 0,3
    mg/litro se observaron efectos en a actividad natatoria general y el
    movimiento opercular. Con 0,3 mg/litro o más se observaron lesiones
    en las branquias y el órgano olfatorio. No se observaron efectos con
    concentraciones de 0,03 y 0,1 mg/litro.

         Se han estudiado los efectos del platino en plantas terrestres;
    todos ellos se realizaron con cloruros de platino solubles. El ácido
    hexacloroplatínico inhibió el crecimiento de las plantas de judías y
    tomates en cultivo arenoso con concentraciones de 3 x 10-5 a 15 x
    10-5 mol/kg (5,9-29,3 mg/kg). De nueve especies hortícolas
    cultivadas en solución hidropónica con tetracloruro de platino,
    PtCl4 (0,057, 0,57 y 5,7 mg Pt/litro), se observaron reducciones
    significativas del peso seco en el tomate, el pimiento y las hojas
    de nabo, así como en las raíces de rábano con la concentración más
    elevada. Con esa concentración, los brotes y las hojas inmaduras de
    la mayoría de las especies sufrieron clorosis. En algunas de las
    especies, con niveles bajos de PtCl4 se observó un efecto del
    estímulo del crecimiento. Además, se suprimió la transpiración con
    la concentración más elevada de platino, probablemente debido a una
    mayor resistencia de los estomas. También se observó estímulo del
    crecimiento con niveles reducidos de platino (0,5 mg Pt/litro),
    administrado en forma de tetracloroplatinato de potasio
    K2[PtCl4], en plantones de la herbácea sudafricana  Setaria
     verticillata cultivada en solución de nutrientes. Al cabo de dos
    semanas, las raíces más largas habían sufrido un aumento de longitud

    del 65%. Con la concentración más elevada que se aplicó, es decir
    2,5 mg Pt/litro, se observaron efectos fitotóxicos en forma de
    retraso del crecimiento radicular y clorosis foliar.


    See Also:
       Toxicological Abbreviations