UKPID MONOGRAPH ARSENIC TRIOXIDE SM Bradberry BSc MB MRCP WN Harrison PhD CChem MRSC ST Beer BSc JA Vale MD FRCP FRCPE FRCPG FFOM National Poisons Information Service (Birmingham Centre), West Midlands Poisons Unit, City Hospital NHS Trust, Dudley Road, Birmingham B18 7QH This monograph has been produced by staff of a National Poisons Information Service Centre in the United Kingdom. The work was commissioned and funded by the UK Departments of Health, and was designed as a source of detailed information for use by poisons information centres. Peer review group: Directors of the UK National Poisons Information Service. ARSENIC TRIOXIDE Toxbase summary Type of product A trivalent arsenic salt used in the production of herbicides and pesticides. Toxicity Generally less acutely toxic than soluble arsenic salts. A patient has died after ingesting 2 g. Features Systemic toxicity may follow arsenic trioxide ingestion, inhalation or topical exposure. Topical - Irritant to skin and mucous membranes. Systemic arsenic poisoning may occur after substantial exposure. Ingestion - Very small ingestions are likely to cause only mild gastro- intestinal upset. Substantial ingestions: - Rapid onset (within 1-2 hours) of burning of the mouth and throat, hypersalivation, dysphagia, nausea, vomiting, abdominal pain and diarrhoea. - In severe cases gastrointestinal haemorrhage, cardiovascular collapse, renal failure, seizures, encephalopathy and rhabdomyolysis may occur. - Other features: facial and peripheral oedema, ventricular arrhythmias (notably torsade de pointes), ECG abnormalities (QT interval prolongation, T-wave changes), muscle cramps. - Investigations may show anaemia, leucopenia, thrombocytopenia or evidence of intravascular haemolysis. - Death may occur from cardiorespiratory or hepatorenal failure. The adult respiratory distress syndrome (ARDS) has been reported. - Survivors of severe poisoning may develop a peripheral neuropathy and skin lesions typical of chronic arsenic poisoning. Inhalation - Rhinitis, pharyngitis, laryngitis and tracheobronchitis may occur. Tracheal and bronchial haemorrhage may complicate severe cases. Chronic arsenic exposure - may occur following ingestion, inhalation or topical exposure. Features include weakness, lethargy, gastrointestinal upset, dermal manifestations (hyperkeratosis and raindrop pigmentation of the skin), a peripheral (motor and sensory) neuropathy and psychological impairment. - Also reported: peripheral vascular disease (cold sensitivity progressing to ulceration and gangrene), renal tubular or cortical damage and haematological abnormalities (notably pancytopenia). Management Topical 1. Irrigate with copious volumes of water. 2. Consider the possibility of systemic arsenic poisoning after significant exposure. Ingestion Very small ingestions: 1. Gastrointestinal decontamination is unnecessary. 2. Symptomatic and supportive care only. Substantial ingestions: 1. Most patients will vomit spontaneously but in those who do not, gastric lavage should be considered only if the patient presents within one hour. 2. Supportive measures are paramount. Intensive resuscitation may be required. Ensure adequate fluid replacement and close observation of vital signs including cardiac monitoring. 3. Diarrhoea can be controlled with loperamide. 4. Monitor blood urea, creatinine, electrolytes, liver function and full blood count. 5. Collect blood and urine for arsenic concentration measurements. 6. ECG evidence of QT prolongation may precede atypical ventricular arrhythmias (notably torsade de pointes). Avoid drugs which prolong the QT interval e.g. procainamide, quinidine or disopyramide. Isoprenaline is effective with phenytoin, lignocaine or propranolol as alternatives. 7. Antidotes - chelation therapy with either dimercaprol, DMSA or DMPS should be considered in symptomatic patients where there is analytical confirmation of the diagnosis, but only after specialist advice from the NPIS. References Bolliger CT, van Zijl P, Louw JA. Multiple organ failure with the adult respiratory distress syndrome in homicidal arsenic poisoning. Respiration 1992; 59: 57-61. Donofrio PD, Wilbourn AJ, Albers JW, Rogers L, Salanga V, Greenberg HS. Acute arsenic intoxication presenting as Guillain-Barré-like syndrome. Muscle Nerve 1987; 10: 114-20. Engel RR, Hopenhayn-Rich C, Receveur O, Smith AH. Vascular effects of chronic arsenic exposure: a review. Epidemiol Rev 1994; 16: 184-209. Gerhardsson L, Dahlgren E, Eriksson A, Lagerkvist BEA, Lundström J, Nordberg GF. Fatal arsenic poisoning - a case report. Scand J Work Environ Health 1988; 14: 130-3. Gerhardt RE, Crecelius EA, Hudson JB. Moonshine-related arsenic poisoning. Arch Intern Med 1980; 140: 211-3. Goldsmith S, From AHL. Arsenic-induced atypical ventricular tachycardia. N Engl J Med 1980; 303: 1096-7. Greenberg C, Davies S, McGowan T, Schorer A, Drage C. Acute respiratory failure following severe arsenic poisoning. Chest 1979; 76: 596-8. Kew J, Morris C, Aihie A, Fysh R, Jones S, Brooks D. Arsenic and mercury intoxication due to Indian ethnic remedies. Br Med J 1993; 306: 506-7. Kosnett MJ, Becker CE. Dimercaptosuccinic acid as a treatment for arsenic poisoning. Vet Hum Toxicol 1987; 29: 462. Mathieu D, Mathieu-Nolf M, Germain-Alonso M, Neviere R, Furon D, Wattel F. Massive arsenic poisoning - effect of hemodialysis and dimercaprol on arsenic kinetics. Intensive Care Med 1992; 18: 47-50. Moore DF, O'Callaghan CA, Berlyne G, Ogg CS, Alban Davies H, House IM, Henry JA. Acute arsenic poisoning: absence of polyneuropathy after treatment with 2,3-dimercaptopropanesulphonate (DMPS). J Neurol Neurosurg Psychiatry 1994; 57: 1133-5. Peterson RG, Rumack BH. D-penicillamine therapy of acute arsenic poisoning. J Pediatr 1977; 91: 661-6. Substance name Arsenic trioxide Origin of substance Occurs in nature as the mineral claudetite. (DOSE, 1992) Synonyms Arsenic oxide Arsenic sesquioxide Arsenious oxide Arsenic(III)oxide Arsenious acid Diarsenic trioxide Arsenous oxide Arsenous acid White arsenic (DOSE, 1992) Chemical group A compound of arsenic, a group VA element Reference numbers CAS 1327-53-3 (DOSE, 1992) RTECS CG 3325000 (CSDS, 1991) UN 1561 (DOSE, 1992) HAZCHEM 2Z (DOSE, 1992) Physicochemical properties Chemical structure As2O3 (DOSE, 1992) Molecular weight 197.84 (DOSE, 1992) Physical state at room temperature Chrystalline solid (CSDS, 1991) Colour Colourless (CSDS, 1991) Odour None (CHRIS, 1995) Viscosity NA pH NIF Solubility 20 g/L at 25°C (OHM/TADS, 1995) Autoignition temperature NA Chemical interactions Forms arsine gas when in contact with metals and acid. Dissolves in alkali to form arsenites. Forms toxic volatile halides when in contact with halide acids. (HSDB, 1995) Major products of combustion Fumes of arsenic trioxide and arsine may be formed in fires. (HSDB, 1995) Explosive limits NA Flammability Not flammable (HSDB, 1995) Boiling point 465°C (DOSE, 1992) Density Claudetite 3.865 at 25°C (DOSE, 1992) Arsenolite 4.15 at 25°C (DOSE, 1992) Vapour pressure 8813 Pa at 312°C (HSDB, 1995) Relative vapour density NIF Flash Point NA Reactivity Explodes on heating with zinc filings. Violent interaction with chlorine trifluoride. Incandesces in contact with hydrogen fluoride. Reacts vigorously with mercury, rubidium acetylide, oxygen difluoride or sodium chlorate. (CSDS, 1991) Uses A constituent of weedkillers, rodenticides and insecticides. In the manufacture of glass, Paris green and enamels. (DOSE, 1992) Hazard/risk classification Index No. 033-003-00-0 Risk phrases Carc. Cat. 1; R45 - May cause cancer T+; R28 - Also very toxic if swallowed C; R34 - Corrosive, causes burns Safety phrases S53-45- Avoid exposure-obtain special instructions before use. In case of accident, or if you feel unwell, seek medical advice immediately (show label where possible). EEC No: 215-481-4 (CHIP2, 1994) INTRODUCTION Arsenic trioxide is the most important commercial form of arsenic and is produced as a by-product of copper and lead smelting. It is used in agriculture, forestry and to a lesser extent in the glass and ceramic industry, as a food additive and in some herbal remedies (IPCS, 1981). Chen et al (1996) recently demonstrated a potential clinical role for arsenic trioxide in the treatment of acute promyelocytic leukaemia. It has been suggested that arsenic trioxide poses less of an acute toxic hazard than water soluble arsenic salts (Done and Peart, 1971). Crude arsenic trioxide is relatively insoluble but may be converted to more soluble derivatives such as arsenious acid or sodium arsenite in some preparations. EPIDEMIOLOGY Arsenic trioxide is the major source of occupational exposure to arsenic compounds, especially from the processing of copper, gold and lead ores. Occupational exposure may also occur in the manufacture of glass, ceramics and pesticides (IPCS, 1981). Arsenic trioxide has been ingested accidentally (Mahieu, 1981; Moore et al, 1994) or with suicidal or homicidal intent (Marcus, 1987; Bolliger et al, 1992). Over two hundred students were poisoned after eating sausages containing 1.36 g/kg arsenic trioxide served at a hall of residence. Many students were ill but none died. Two people and one dog died after consuming sausages from an earlier batch containing 14.3 g/kg arsenic trioxide (Renwick et al, 1981). The source of arsenic trioxide may be pesticides (Done and Peart, 1971; Kuruvilla et al, 1975; Park and Currier, 1991), homeopathic or ethnic remedies (Kerr and Saryan, 1986) or Fowler's solution, the most notable source of medicinal arsenic intoxication. Fowler's solution is formed by dissolving arsenic trioxide in potassium hydroxide solution to form potassium arsenite. MECHANISM OF TOXICITY The principle mechanism of arsenic intoxication is disruption of thiol proteins. For example, arsenic inactivates pyruvate dehydrogenase by complexing with the sulphydryl groups of a lipoic acid moiety (6,8-dithiooctanoic acid) of the enzyme (Jones, 1995). Enhanced cellular destruction of damaged thiol proteins may produce toxic oxygen radicals. Arsenic-induced reduced lymphocyte proliferation and impaired macrophage function also have been described. Dong and Luo (1994) suggested that while arsenic can directly damage DNA, a more important mechanism in arsenic-induced carcinogenicity is enhanced mutagenicity of other compounds via increased DNA-protein crosslinks. The affinity of arsenic for sulphydryl groups is utilized in chelation therapy. TOXICOKINETICS Absorption Insoluble arsenic trioxide is less well absorbed than more soluble salts (Fielder et al, 1986). The efficiency of absorption following ingestion is dependent on the particle size; fine powders are better absorbed than larger particles (Done and Peart, 1971). A large proportion of irrespirable arsenic trioxide particles are trapped in the upper airways and deposited in the gastrointestinal tract by mucociliary clearance. This is likely to be an important source of arsenic trioxide exposure since the extent of absorption following ingestion and inhalation are similar (Smith et al, 1977; IPCS, 1981). Although direct evidence of transcutaneous arsenic absorption in man is scarce (Fielder et al, 1986) systemic arsenic toxicity following presumed dermal exposure has been reported (Heyman et al, 1956). Distribution Absorbed arsenic is distributed to all body tissues (Fielder et al, 1986). Trivalent arsenic is methylated in the liver to methylarsonic acid and dimethylarsinic acid (IPCS, 1996). Short-term studies on humans indicate that daily intake in excess of 0.5 mg progressively, but not completely, saturates the capacity to methylate inorganic arsenic (IPCS, 1996). Very high arsenic concentrations have been found in the hair of workers exposed to arsenic trioxide dust but this may reflect external contamination rather than systemic absorption (Yamamura and Yamauchi, 1980). Excretion The half-life of arsenic in blood is about 60 hours with renal excretion predominantly as mono- and dimethyl- derivatives (Waldron and Scott, 1994). The whole body half-life of arsenic in six human volunteers fitted a three compartment system, with 65.9 per cent of orally administered arsenic having a half-life of 2.1 days, 30.4 per cent a half-life of 9.5 days and 3.7 per cent a half-life of 38.4 days (mean values) (Pomroy et al, 1980). In animal studies small amounts of parenterally administered arsenic trioxide appear in the faeces, suggesting minor biliary clearance (Reichl et al, 1994). CLINICAL FEATURES: ACUTE EXPOSURE Dermal exposure Trivalent arsenic compounds are irritating to the skin and mucous membranes with dermatitis the most common feature following occupational exposure. Erythema, burning and itching, eczematous eruptions and folliculitis are typical (Fielder et al, 1986). Ocular exposure Arsenic trioxide is an eye irritant. Most injuries result form exposure to dusts, causing conjunctivitis, lacrimation, photophobia and chemosis (Grant and Schuman, 1993). Inhalation Inhalation of arsenic compounds causes rhinitis, pharyngitis, laryngitis and tracheobronchitis (Morton and Dunnette, 1994). Gerhardsson et al (1988) reported an occupational accident in which a worker was buried by arsenic trioxide powder and despite intensive resuscitation died six hours later. At autopsy there were submucosal tracheal and bronchial haemorrhages, widespread mucosal sloughing, alveolar haemorrhages and oedema. Ingestion Insoluble, poorly absorbed arsenic trioxide presents a much less acute toxic hazard than soluble compounds such as sodium arsenite which are well absorbed after ingestion (Done and Peart, 1971). However, substantial arsenic trioxide ingestions may produce serious systemic toxicity. A patient has died after ingesting 2 g (Levin-Scherz et al, 1987). Gastrointestinal toxicity Nausea, vomiting, abdominal pain and diarrhoea are common after substantial arsenic trioxide ingestion (Watson et al, 1981; Marcus, 1987; Moore et al, 1994). Gastrointestinal haemorrhage may lead to cardiovascular collapse. A direct toxic effect of arsenic on capillaries via sulphydryl-group binding is thought to contribute to this (Jolliffe et al, 1991; Morton and Dunnette, 1994). A 21 year-old man who ingested 2 g arsenic trioxide presented 26 hours later with diarrhoea, vomiting and cardiovascular shock (Levin-Scherz et al, 1987). Despite vigorous resuscitation with inotropic support and dimercaprol therapy he died 36 hours after admission from resistant ventricular fibrillation and asystole. The admission plasma arsenic concentration was shown subsequently to be 1.9 mg/L. Bolliger et al (1992) reported two patients maliciously poisoned with arsenic trioxide-contaminated chocolate (amount not stated). Both immediately experienced a burning sensation in the mouth and within minutes developed severe abdominal cramps, nausea and vomiting then diarrhoea. Three days later abdominal pain recurred with hypersalivation and haematemesis. Gastroscopy revealed a large gastric ulcer in the fundus with severe oesophagitis and gastritis in one of the subjects. Arsenic poisoning was not suspected initially and chelation therapy not started until eight days post ingestion. Analysis of urine samples taken on the day of admission showed arsenic concentrations of 5.3 mg/L and 5.8 mg/L respectively. Severe pulmonary and neurological features were also present but both patients survived. Hepatotoxicity Bolliger et al (1992) reported a 30 year-old male maliciously poisoned with arsenic trioxide (amount not stated) who developed transiently increased alkaline phosphatase and liver transaminase activities plus an increased bilirubin concentration. He eventually recovered. Another patient (Levin-Scherz et al, 1987) died 62 hours after ingesting 2 g arsenic trioxide following a clinical course complicated by cardiovascular collapse, renal failure and eventually an asystolic cardiac arrest. Hepatic transaminase activities were moderately increased on admission (aspartate aminotransferase 206 IU/L). Nephrotoxicity Hypotension (Levin-Scherz et al, 1987; Jolliffe et al, 1991; Moore et al, 1994) or rhabdomyolysis following substantial ingestion (Sanz et al, 1989; Fernadez-Sola et al, 1991) may precipitate renal failure (Bolliger et al, 1992). A case of arsenic-induced renal cortical necrosis has been described (Gerhardt et al, 1978). Cardiovascular toxicity Tachycardia is typical following arsenic ingestion (Peterson and Rumack, 1977; Levin-Scherz et al, 1987) and is contributed to by anxiety, hypovolaemia and possibly direct arsenic-induced cardiotoxicity. Ventricular arrhythmias (St. Petery et al, 1970), notably torsade de pointes (Beckman et al, 1991) have been observed. Other ECG abnormalities include prolongation of the QT interval (Bolliger et al, 1992) and non-specific T wave changes. Jolliffe et al (1991) reported massive acute arsenic trioxide ingestion in a patient who developed sudden onset bradycardia then asystole despite vigorous resuscitation and no earlier arrhythmia. In another report (Levin-Scherz et al, 1987) a 21 year-old male developed cardiovascular collapse 26 hours after ingesting 2 g arsenic trioxide. The ECG initially showed a sinus tachycardia (140 bpm) and "non-specific ST-T wave abnormalities" with a normal QT interval. Thirty six hours after admission the patient became bradycardic (35 bpm) then developed ventricular fibrillation unresponsive to cardioversion before an asystolic cardiac arrest from which he could not be resuscitated. Neurotoxicity Acute substantial arsenical ingestion has caused muscle cramps, a sensorineural hearing deficit (Goldsmith and From, 1980), encephalopathy (Jenkins, 1966; Levin-Scherz et al, 1987) and seizures (St. Petery et al, 1970; Peterson and Rumack, 1977). A peripheral sensory and/or motor neuropathy, although typical of chronic arsenic poisoning has been described also in survivors of severe acute poisoning, often in association with dermal manifestations of arsenic toxicity (Heyman et al, 1956; Kyle and Pease, 1965; Jenkins, 1966; Le Quesne and McLeod, 1977). Goebel et al (1990) demonstrated acute wallerian degeneration of myelinated nerve fibres in a patient who developed a symmetrical polyneuropathy after attempting suicide by ingesting arsenic. Clinical improvement was associated with microscopic evidence of neurological regeneration. A 30 year-old male maliciously poisoned by arsenic trioxide (amount not stated) developed a peripheral neuropathy and mild generalized muscle weakness five days after ingestion (Bolliger et al, 1992). The arsenic concentration in an admission urine sample was 5.3 mg/L, but arsenic intoxication was not diagnosed until eight days after ingestion. Muscle weakness increased, he became confused and hallucinated. A decreased level of consciousness and respiratory distress necessitated intubation and mechanical ventilation. The neuropathy progressed following extubation and three weeks after admission an electromyogram showed a severe polyneuropathy with axonal degeneration. Muscle power in all limbs was 1/5. Severe paraesthesiae in the hands and feet continued and the patient was confined to a wheelchair. Twenty six months after intoxication he was able to walk with aid and had regained 70 per cent hand function (Bolliger et al, 1992). Dermal toxicity Striate leukonychia (Mees' lines) and hyperkeratotic, hyperpigmented skin lesions may be seen following severe acute arsenic poisoning although are associated typically with chronic exposure. Facial and peripheral oedema have also been described (Heyman et al, 1956; Kyle and Pease, 1965). Bolliger et al (1992), reported two subjects maliciously poisoned with arsenic trioxide. Both developed maculopapular, partly vesicular, skin rashes seven days after ingestion as well as severe gastrointestinal, pulmonary and neurological symptoms. Haemotoxicity In moderate or severe arsenic poisoning investigations typically show anaemia, leucopenia or pancytopenia (Kyle and Pease, 1965; Bolliger et al, 1992). There may be evidence of intravascular haemolysis and the blood film often shows basophilic stippling (Kyle and Pease, 1965; St. Petery et al, 1970). Oral toxicity Yakata et al (1985) reported a case of mandibular osteolysis with an occluded alveolar artery and alveolar nerve damage in which the suspected cause was arsenic trioxide applied to a tooth for devitalization. Multi-organ toxicity Severe acute arsenic poisoning may result in death from cardiorespiratory or hepatorenal failure (Jenkins, 1966; Fernadez-Sola et al, 1991; Morton and Dunnette, 1994). Two adults maliciously poisoned by arsenic trioxide-contaminated chocolate developed multi-organ failure complicated by adult respiratory distress syndrome (Bolliger et al, 1992). They survived with persisting evidence of a sensory peripheral neuropathy two years later. CLINICAL FEATURES: CHRONIC EXPOSURE Dermal exposure The major source of dermal exposure is occupational. Metal ore smelting is an important cause since arsenic trioxide is a by-product of many processes (Hine et al, 1977). Dermatitis is the most common manifestation of occupational arsenic trioxide exposure due to either a direct irritant action or to sensitization. Prolonged exposure has resulted in ulcerative lesions of the extremities (Fielder et al, 1986). Systemic arsenic toxicity may ensue (see below). Inhalation Exposure to arsenic trioxide dust has been reported in the metal ore smelting industry and during the manufacture of inorganic arsenic compounds (Fielder et al, 1986). Local effects include conjunctivitis, hoarseness, pharyngitis, nasal irritation and haemoptysis (Heyman et al, 1956; Hine et al, 1977). Nasal septum perforation is also described (Fielder et al, 1986). Systemic features of arsenic poisoning may ensue. Ingestion Arsenic trioxide has found widespread use in ethnic herbal remedies (Kerr and Saryan, 1986; Kew et al, 1993). Contamination of well water by arsenic trioxide and arsenic trisulphide has been reported as the cause of systemic arsenic intoxication (Tsuda et al, 1995). Systemic arsenic trioxide toxicity The systemic features observed are similar for each source of exposure which are considered together. General toxic effects Patients may present with general debility, progressive weakness, fever and sweats (Heyman et al, 1956). Dermal toxicity The characteristic dermal manifestations are hyperkeratosis and "raindrop" pigmentation of the skin (Heyman et al, 1956; Kyle and Pease, 1965; Shannon and Strayer, 1989; Sass et al, 1993). Hyperkeratoses appear as multiple small nodules which may coalesce to form plaques and are found most commonly on the palms and soles. Hyperkeratotic lesions may develop into squamous cell carcinomas which are notable for their occurrence on non light-exposed areas of the upper extremities and trunk (Shannon and Strayer, 1989). Hyperpigmentation is more prominent in the axilla, groin, areola and around the waist, typically with mucosal sparing (Shannon and Strayer, 1989). Skin changes in chronic arsenic poisoning seem to be exacerbated by poor nutritional status. The fingernails may become brittle with transverse white striae (Mees' lines) (Mees, 1919; Heyman et al, 1956; Kyle and Pease, 1965; Sass et al, 1993). Exfoliative dermatitis has been reported following arsenical drug administration (Nicolis and Helwig, 1973). Sass et al (1993) described a 37 year-old woman with chronic arsenic intoxication. Her sister had added an unstated quantity of arsenic trioxide to her coffee every morning for two years. She initially developed a generalized "melanoderma" followed by a punctate palmoplantar keratoderma. Histological examination showed dermal thickening, hyperkeratoses, hyperpigmentation and nuclear atypia analogous to Bowen's disease. Later examination revealed Mees' lines. Her cutaneous lesions remained unchanged four years later. A 35 year-old man developed Mees' lines on the fingernails and hyperkeratoses of the soles of the feet six weeks after starting to use an ethnic remedy for atopic eczema. The remedy contained arsenic trioxide, 210 mg per daily dose (Kew et al, 1993) Neuropsychological toxicity A symmetrical peripheral neuropathy is typical (Feldman et al, 1979). Sensory symptoms predominate with paraesthesiae, numbness and pain, particularly of the soles of the feet, extending in a "glove and stocking" distribution (Jenkins, 1966; Kew et al, 1993). Motor involvement with symmetrical distal limb weakness, muscle atrophy and loss of deep tendon reflexes is recognized (Heyman et al, 1956; Bansal et al, 1991). Complete respiratory muscle paralysis (Greenberg et al, 1979; Gerhardt et al, 1980), a phrenic neuropathy (Bansal et al, 1991) and cranial nerve involvement have been reported. The neuropathy may be confused with the Guillain-Barré syndrome (Kyle and Pease, 1965; Donofrio et al, 1987). Gastrointestinal symptoms and skin manifestations suggest arsenic poisoning, while a high CSF protein concentration and cranial nerve involvement are more typical of the Guillain-Barré syndrome. Electromyelography may show reduced peripheral nerve conduction velocities in the absence of symptoms (Lagerkvist and Zetterlund, 1994). Psychological impairment is widely reported in chronic arsenic poisoning with defects of verbal learning ability and memory and personality changes (Heyman et al, 1956; Bolla-Wilson and Bleecker, 1987). Beckett et al (1986) described a 50 year-old chemical plant engineer who developed delirium, agitation and emotional lability after some 20 years occupational arsenic exposure in an antimony smelting plant. Gastrointestinal toxicity Nausea and vomiting, although more typical of acute arsenic poisoning, may occur also in chronic cases. Hepatotoxicity Although animal studies suggest arsenic trioxide inhalation or ingestion causes liver damage (Hine et al, 1977) there is little evidence for this following occupational exposure (Fielder et al, 1986). Narang (1987) suggested increased arsenic consumption as a contributing factor in the aetiology of liver disease in the Indian population when he found significantly increased hepatic arsenic concentrations at autopsy in 178 patients dying from cirrhosis, non cirrhotic portal fibrosis, fulminant hepatitis, Wilson's disease or alcoholic liver disease. Jhaveri (1959) reported the death of 46 year-old man from cirrhosis and primary carcinoma of the liver. Over 20 years occupational exposure (in chemical manufacture) to arsenic trioxide and sodium arsenite was thought to be aetiologically significant. The patient had increased urine, hair and nail arsenic concentrations. Nephrotoxicity Renal manifestations of chronic arsenic poisoning probably reflect capillary damage and include haematuria, proteinuria with casts and acute tubular or cortical necrosis (Morton and Dunnette, 1994). In a study of 84 smelter workers chronically exposed to arsenic trioxide Telolahy et al (1993) found increased concentrations of urinary coproporphyrins compared to non-exposed controls. This reflects arsenic-induced impaired haem metabolism (see below). Peripheral vascular and cardiovascular toxicity "Black foot disease" refers to a severe form of peripheral vascular disease seen in Taiwan in those who drink artesian well water with an high arsenic concentration. Initial paraesthesiae and cold sensitivity progress to ulceration and gangrene (Chiou et al, 1995). It has been suggested that mortality due to all vascular diseases may be increased in these populations (Chen and Lin, 1994; Engel et al, 1994). Raynaud's syndrome has also been described in those chronically exposed to arsenical dust (Lagerkvist et al, 1988). Several authors refer to the myocardial toxicity of arsenic (Schoolmeester and White, 1980; Hall and Harruff, 1989) which has been attributed to impaired oxidative metabolism of myocardial tissue plus a direct arsenic-induced inflammatory process. A 42 year-old agricultural worker presented with systemic features of chronic arsenic poisoning (neuropathy and skin lesions) and had a 24 hour urine arsenic excretion of 7000 µg (Hall and Harruff, 1989). He received a 15 day course of dimercaprol with some improvement in motor function. On the 26th day of hospital admission he suddenly collapsed and died following a cardiac arrest. At post-mortem he had a diffuse interstitial myocarditis which was assumed to have triggered a fatal arrhythmia. Haemotoxicity Investigations in chronic arsenic poisoning often show anaemia, neutropenia (Heyman et al, 1956; Kyle and Pease, 1965), pancytopenia or evidence of haemolysis (Kyle and Pease, 1965) but macrocytosis without anaemia (Heaven et al, 1994) and a myelodysplastic syndrome (Rezuke et al, 1991) are also described. Haematological analyses of 130 smelter workers occupationally exposed to arsenic trioxide (concentrations not stated) revealed a relative neutropenia in 23 per cent of cases (Hine et al, 1977). Sass et al (1993) noted moderate anaemia and leucopenia (values not stated) in a 37 year-old woman maliciously poisoned with an unstated amount of arsenic trioxide daily for over two years. Chronic arsenic exposure complicated by aplastic anaemia may predispose to acute myeloid leukaemia (Kjeldsberg and Ward, 1972). Disrupted haem metabolism with altered urinary porphyrin excretion (Telolahy et al, 1993) has been reported. Endocrine toxicity An occupational study among smelter workers in Sweden (Lagerkvist and Zetterlund, 1994) has associated chronic arsenic exposure with the development of diabetes mellitus. MANAGEMENT Dermal exposure Surface decontamination should be attempted where necessary. Treat burns conventionally. Consider the possibility of systemic arsenic poisoning and the need for chelation therapy (see below). Ocular exposure Irrigate the eye with copious lukewarm water. A topical anaesthetic may be necessary for pain relief. Seek an ophthalmic opinion if symptoms persist or examination is abnormal. Inhalation Immediate management involves removal from exposure and administration of supplemental oxygen if necessary. Evidence of systemic arsenic uptake should be sought and chelation therapy considered as discussed below. Ingestion Decontamination After acute ingestion of a substantial quantity of arsenic trioxide most patients will vomit spontaneously but, in those who do not, gastric lavage should be considered only if it is possible to undertake the procedure within the first hour. Supportive measures Severe acute arsenic trioxide poisoning requires prompt intensive resuscitation with adequate fluid replacement and close observation of vital signs including cardiac monitoring. Diarrhoea may be treated symptomatically with loperamide. Chelation therapy should be considered in symptomatic cases. Obtain blood and urine for arsenic concentration determination. Electrocardiographic evidence of QT prolongation in arsenic poisoning may precede atypical ventricular arrhythmias, notably torsade de pointes, and in these circumstances drugs which themselves prolong the QT interval, such as procainamide, quinidine or disopyramide, should be avoided. Isoprenaline is effective; phenytoin, lignocaine or propranolol are alternatives (Goldsmith and From, 1980). Antidotes Chelating agents used in the treatment of arsenic poisoning are dithiol compounds which can remove arsenic from endogenous sulphydryl groups, the targets of arsenic toxicity (Jones, 1995). Traditionally, dimercaprol (British anti-lewisite, BAL) has been the recommended chelator in arsenic intoxication (Jenkins, 1966; Greenberg et al, 1979; Roses et al, 1991). However, dimercaprol may produce unpleasant adverse effects and must be administered by deep intramuscular injection. There is increasing evidence that dimercaptosuccinic acid (DMSA, Succimer) (Aposhian et al, 1984; Graziano, 1986; Fournier et al, 1988; Inns et al, 1990) and dimercaptopropane sulphonate (DMPS, Unithiol) (Aposhian, 1983; Aposhian et al, 1984; Hruby and Donner, 1987; Inns et al, 1990) are less toxic and may be preferable. DMSA and DMPS are more effective in reducing the arsenic content of tissues, they increase biliary as well as urinary arsenic elimination and, unlike dimercaprol, do not appear to cause arsenic accumulation in the brain (Kreppel et al, 1990; Moore et al, 1994). On the other hand, arsenic mercaptide (the chelation complex of dimercaprol and arsenic) is dialysable and hence dimercaprol may be preferred in the presence of renal failure (Sheabar et al, 1989; Mathieu et al, 1992) The importance of an increased urine arsenic concentration in determining the need for chelation therapy is disputed. Kersjes et al (1987) suggested a spot urine concentration greater than 200 µg/L should be taken as an indication of "significant" arsenic exposure but Kingston et al (1993) emphasised that arsenic concentrations significantly higher than this (3500 µg/24 h and 5819 µg/24 h in two of their patients) may be observed in the acute phase following pentavalent arsenic ingestion without severe sequelae. Dimercaprol (British anti-lewisite; BAL) Dimercaprol was developed during the Second World War as an antidote for lewisite (dichloro(2-chlorovinyl) arsine) poisoning (Peters et al, 1945). It possesses two sulphydryl groups and forms a stable mercaptide ring with arsenic. The alcohol group on dimercaprol confers some degree of water solubility, thereby enhancing excretion from the body. As the chelation complex tends to dissociate it is necessary to maintain a constant excess of dimercaprol. Unlike DMSA and DMPS, dimercaprol is also lipid soluble and increases the brain arsenic concentration in arsenic-intoxicated animals (Jones, 1995). Though increasingly superseded by the less toxic thiol chelating agents, intramuscular dimercaprol remains useful in severe arsenic poisoning where vomiting prevents oral antidote administration, supplies of DMSA or DMPS are not rapidly available (Jolliffe et al, 1991) or renal failure requires haemodialysis; dimercaprol but not DMSA chelates can cross the dialysis membrane (Sheabar et al, 1989; Mathieu et al, 1992). Animal studies Stocken and Thompson (1946) demonstrated increased urine arsenic excretion (up to 33.5 per cent of the amount applied) in the 24 hours following cutaneous application of lewisite to rodents, when dimercaprol (dose not stated) was spread over the affected area up to one hour later. Dimercaprol also prevented arsenic-induced diarrhoea observed in control animals. Intravenous injection of dimercaprol glucoside 1.5 g/kg prevented death in two rabbits poisoned with cutaneous lewisite (12 mg/kg). Eleven control animals died, as did two treated with subcutaneous dimercaprol 0.07 g/kg (Danielli et al, 1947). A recent study has demonstrated that intramuscular dimercaprol protects rabbits against the lethal systemic effects of intravenously administered lewisite. No appreciable difference was found between the protective effect of dimercaprol and that of water soluble analogues DMPS and DMSA (Inns et al, 1990). Clinical studies In a case series, 12 men were exposed to smoke containing diphenylcyano-arsenic (1.6 mg/m3), "other forms of organic arsenic" (0.5 mg/m3) and "inorganic arsenic" (1.8 mg/m3) for six minutes. They were treated with 3.5 mg/kg intramuscular dimercaprol 6.5-78 hours post exposure. Urine arsenic excretion increased by an average of 40 per cent between two and four hours after the injection. The largest increase, both absolute and relative, was observed in those treated earliest (6.5 hours after exposure) (Wexler et al, 1946). Giberson et al (1976) described the treatment of a 44 year-old male who ingested 400 mg sodium arsenite. Intramuscular dimercaprol 250 mg was administered every four hours. Haemodialysis was initiated in response to renal failure with 3.3 mg arsenic removed over four hours. By the sixth day, when renal function had recovered, arsenic excretion had reached 75 mg/24h with at least 115 mg arsenic excreted between days two and six. A four year-old boy who had ingested an unknown amount of arsenic trioxide rat poison was treated with dimercaprol 5 mg/kg every four hours for 16 hours. The urine contained 2,120 µg arsenic over the first 12 hours. He developed an urticarial rash over the lower extremities which subsided with the discontinuation of dimercaprol. The urine arsenic concentration decreased gradually during d-penicillamine treatment (Peterson and Rumack, 1977). Schoolmeester and White (1980) reported a 16 year-old female who ingested 300 mg sodium arsenate in a suicide attempt. She received intramuscular dimercaprol 125 mg every four hours for the first 24 hours, then twice daily for 24 hours. A 24 hour urine arsenic concentration (starting time not specified) was 14,200 µg/L. The effect of chelation therapy on arsenic excretion is not known but the patient fully recovered. Mahieu et al (1981) described a 44 year-old male who ingested an unknown amount of arsenic trioxide which had been mistaken for sugar. The dose "certainly exceeded 1000 mg". Intramuscular dimercaprol 2.5-4 mg/kg tds was administered for 21 days. Initial arsenic excretion was low due to renal insufficiency but increased to 10 mg/24h from three to seven days post ingestion. The patient excreted a total of 129 mg arsenic during his 26 days in hospital. A 40 year-old woman poisoned at the same time and treated with the same regimen for 17 days excreted 16.7 mg arsenic on the first day, the amount decreasing on subsequent days. Seventy three milligrams arsenic were eliminated over three weeks. A 32 year-old man who ingested 900 mg sodium arsenate in a suicide attempt commenced treatment with intramuscular dimercaprol 5 mg/kg four hourly five hours later. Dimercaprol was stopped on day four. This patient also received oral d-penicillamine and intravenous then oral N-acetylcysteine between days two and 82 post ingestion. The urine arsenic concentration rose on the second hospital day then declined progressively during the next week although the data were incomplete and uninterpretable (Bansal et al, 1991). A 22 month-old female who developed diarrhoea, vomiting and lethargy after ingesting approximately 0.7 mg sodium arsenate was treated initially with one intramuscular dose of dimercaprol 3 mg/kg nine hours post ingestion. Three hours later the infant was asymptomatic and dimercaprol therapy discontinued although she subsequently received oral d-penicillamine then oral DMSA to treat persisting high urine arsenic concentrations (4880 µg/L in the first 24 hours after admission) (Cullen et al, 1995). On the third hospital day the urine arsenic concentration (from a 24 hour collection) was 1355 µg/L and fell progressively to 96 µg/L on day 12. These data do not enable any conclusions to be drawn regarding enhanced arsenic elimination. No benefit from dimercaprol was reported by McCutchen and Utterback (1966) in the treatment of severe chronic arsenic poisoning. Other authors have reported disappointing results with dimercaprol in the management of arsenic neuropathy (Heyman et al, 1956) although Jenkins (1966) described "no detectable disability" 18 months after acute sodium arsenite ingestion in a patient who developed a peripheral neuropathy and received "a full course of dimercaprol" (details not given). Marcus (1987) described a 16 year-old male who survived ingestion of 56 mg arsenic trioxide following treatment with intramuscular dimercaprol 4 mg/kg every four hours (duration not stated). The maximum urine arsenic excretion was "over 50 mg/day" falling to 20 µg/day by day 31. At twelve month follow-up neurological effects persisted. Mahieu et al (1981) suggested that a high (greater than 90 per cent) proportion of methylated arsenic in the urine of poisoned patients could be used to indicate a late presentation with less likelihood of benefit from chelation therapy. Treatment protocol Dimercaprol must be given by deep intramuscular injection. After injection 90 per cent of an administered dose is absorbed and Cmax is attained within one hour (Peters et al, 1947). Dimercaprol is distributed throughout the intracellular space and metabolic degradation and excretion is complete in less than four hours. Depending on severity, 2.5-5 mg/kg should be administered four hourly for two days. This is to ensure that a constant excess of dimercaprol is always present as the chelation complex dissociates. Traditionally, this initial treatment is followed by 2.5 mg/kg bd intramuscularly for one to two weeks. However, this is an empirical recommendation and may be insufficient in severe cases. Dosage and duration should be adjusted therefore, depending on urine arsenic removal. Adverse effects The most common adverse effect of dimercaprol is dose-related hypertension (with an increase in systolic pressure of up to 50 mmHg) which usually resolves within three hours of administration (Dollery, 1991) but may be associated with nausea, headache, sweating and abdominal pain. Gastrointestinal disturbance may also occur without hypertension. Conjunctivitis, paraesthesiae and fever have been described. Dimercaprol is contraindicated in severe liver disease since it is metabolized by glucuronidation with subsequent biliary excretion. DMSA DMSA is commercially available in some countries (though not the UK) mainly as meso-DMSA, although a DL-form also exists. Animal studies Aposhian et al (1984) demonstrated that DMSA was moderately more effective than DMPS (and substantially more effective than dimercaprol) in protecting mice from the lethal effects of sodium arsenite. DMSA mobilizes arsenic from tissues, increasing urine arsenic excretion without a rise in brain arsenic concentrations (Aposhian et al, 1984). Mice administered subcutaneous arsenic trioxide (5 mg/kg) followed immediately by intraperitoneal DMSA 100 mg/kg, showed significantly increased urine arsenic excretion (p<0.01) in the first 12 hours post chelation although the 48 hour urine arsenic elimination was not significantly different between DMSA-treated mice and controls (Maehashi and Murata, 1986). In animal studies DMSA protected against the embryotoxic effects of sodium arsenite but only when given within one hour of exposure (Bosque et al, 1991). Recent experiments suggest that oral monoester DMSA analogues may offer renal protection in arsenic poisoning by increasing the enteral arsenic content to enhance faecal rather than renal elimination (Hannemann et al, 1995). In other animal studies lipophilic DMSA analogues were inferior to the parent compound as arsenic antidotes (Kreppel et al, 1993). Clinical studies Lenz et al (1981) described a 46 year-old man who ingested 200 mg arsenic and survived following treatment with oral DMSA 300 mg qds for three days. Kosnett and Becker (1987) reported an increase in the 24 hour urine arsenic excretion from 26 µg to a maximum of 340 µg on the second day of oral DMSA 660 mg tds in a patient who presented more than 30 days after malicious acute arsenic ingestion. Nine days after ingesting approximately 0.7 mg of a soluble arsenic salt a 22 month-old female was treated with oral DMSA 30 mg/kg/day for at least four days (Cullen et al, 1995). The child had already received chelation therapy with dimercaprol and d-penicillamine, but further treatment was instituted because of a persistently raised urine arsenic concentration (650 µg/L on day five). Four days later the urine arsenic concentration had fallen to 96 µg/L. The authors reported an overall urine arsenic half-life of 2.6 days. Although the child initially experienced vomiting, diarrhoea and lethargy these features resolved within 12 hours and renal and hepatic function remained normal throughout (Cullen et al, 1995). There was no objective improvement in the neurological manifestations of chronic arsenic poisoning in a man poisoned by an ethnic remedy despite two weeks therapy with oral DMSA 400 mg tds (Kew et al, 1993). No urine arsenic excretion data were given. A 33 year-old woman with acute-on-chronic lead and arsenic poisoning from a herbal remedy clinically recovered following two one-week courses of oral DMSA 270 mg tds, though the effect of chelation therapy on urine arsenic excretion is difficult to interpret (Mitchell-Heggs et al, 1990). Treatment protocol DMSA is given orally in a dose of 30 mg/kg body weight per day; an intravenous preparation is available in some countries and may be preferable if the patient is vomiting (Hantson et al, 1995). Adverse effects Side-effects following treatment with DMSA are rare but include skin rashes, gastrointestinal disturbance, elevation of serum transaminase activities and flu-like symptoms (Reynolds, 1993). DMSA should be used with caution in patients with impaired renal function or a history of hepatic disease (Reynolds, 1993). DMPS Animal studies DMPS is commercially available as a racemic mixture of the dextro-rotatory and levo-rotatory forms which appear to be equally effective arsenic chelators (Aposhian, 1983), though animal studies suggest DMSA may be superior to either (Aposhian et al, 1984). Urine arsenic elimination of arsenic-poisoned rats in the 48 hours post treatment with DMPS 100 mg/kg intraperitoneally was significantly lower (p<0.05) than in either control (5 mg/kg subcutaneous arsenic trioxide only) or DMSA-treated mice (Maehashi and Murata, 1986). However DMPS significantly increased (p<0.01) faecal arsenic elimination in the 24 hours post chelation compared to control or DMSA treated mice, suggesting biliary excretion of the DMPS-arsenic chelate (Maehashi and Murata, 1986). Other authors have noted enhanced biliary but not faecal arsenic excretion following parenteral DMPS administration to arsenic-poisoned experimental animals. This suggests enterohepatic circulation of the chelate, which Reichl et al (1995) attempted to block using oral cholestyramine. They demonstrated enhanced faecal arsenic elimination (p<0.05) when intraperitoneal DMPS 0.1 mmol/kg and subcutaneous arsenic trioxide (0.02 mmol/kg) administration was followed by an oral combination of cholestyramine (0.2 g/kg) and DMPS 0.1 mmol/kg (Reichl et al, 1995). Domingo et al (1992) demonstrated a protective effect of DMPS 150-300 mg/kg, but not dimercaprol, against experimental arsenite-induced embryotoxicity and teratogenicity as judged by the incidence of foetal malformation or death in mice administered intraperitoneal sodium arsenite (12 mg/kg) on day nine of gestation. Clinical studies Two men inadvertently ingested 1 g and 4 g arsenic trioxide respectively (Moore et al, 1994). The more severely poisoned patient developed acute renal failure and 26 hours post ingestion had a blood arsenic concentration of 400 µg/L. He received intravenous DMPS 5 mg/kg every four hours for six days then oral DMPS 400 mg every four hours for one week. The other patient had a blood arsenic concentration of 98 µg/L, 36 hours post ingestion and received a shorter course of intravenous then oral DMPS. Both patients recovered fully but quantitative data showing the effect of chelation therapy on urine arsenic elimination were documented poorly. In another report there was no objective improvement in the neurological manifestations of chronic arsenic poisoning in a patient treated with oral DMPS 100 mg tds for three weeks (Kew et al, 1993). Treatment protocol DMPS is given orally or parenterally in a dose of 30 mg/kg body weight per day. Adverse effects Side effects following treatment with DMPS are infrequent but have included allergic skin reactions, nausea, vertigo and pruritis (Aposhian, 1983). d-Penicillamine Animal studies d-Penicillamine has been reported to be as effective as dimercaprol and NAC in prolonging the survival time of mice injected with a lethal dose of sodium arsenite (Shum et al, 1981). Other studies have disputed the validity of these results and have failed to demonstrate d-penicillamine as a useful chelator (Aposhian, 1982; Kreppel et al, 1989). Clinical studies Peterson and Rumack (1977) described three children who shared a bottle of rat poison containing arsenic trioxide 1.75 per cent. One died within hours following a rapidly deteriorating course of coma, convulsions and cardiac arrhythmias. The second, a four year-old male, presented with lethargy, a sinus tachycardia and tachypnoea. Oral d- penicillamine 25 mg/kg qds replaced dimercaprol treatment after 16 hours when the patient developed an urticarial rash over the lower extremities. The first twelve-hour urine collection during dimercaprol treatment contained 2,120 µg arsenic with the urine arsenic concentration decreasing during the five days d-penicillamine therapy. The child made a full recovery. The third patient (Peterson and Rumack, 1977) had no severe features of toxicity at presentation. He received the same chelation therapy regimen as patient 2. On the second day post ingestion the 24 hour urine arsenic excretion was 300 µg, increasing in the next 24 hours (the second day of d-penicillamine therapy) to approximately 800 µg. This patient also recovered fully. A one year-old child ingested 15-20 mg sodium arsenate (as ant poison) and was treated within six hours with 5 mg/kg intramuscular dimercaprol (Peterson and Rumack, 1977). The chelating agent was then changed to oral d-penicillamine 100 mg/kg/day and continued for five days. An initial 12 hour urine collection (commenced approximately six hours post ingestion) contained 192 µg arsenic, increasing to 2000 µg arsenic in the next 24 hours before falling to approximately 200 µg/24 h on day two. These authors advocated d-penicillamine 100 mg/kg/day as the treatment of choice in arsenic poisoning (where oral therapy is possible). They recommended d-penicillamine should be continued until the 24 hour urine arsenic excretion is less than 50 µg (Peterson and Rumack, 1977). A 16 month-old child was given a five day course of oral d-penicillamine 250 mg qds 14 hours after ingesting 9-14 mg arsenic trioxide. Clinical features of toxicity (diarrhoea, vomiting and lethargy) resolved within 24 hours and the child was discharged on day three. The arsenic concentration in urine collected during the first day of treatment was 560 µg/L. However, no earlier urine arsenic concentrations were measured and prior to d-penicillamine therapy the patient had received 185 mg dimercaprol over 18 hours (Watson et al, 1981). DiNapoli et al (1989) instituted d-penicillamine therapy in a patient unable to tolerate intramuscular dimercaprol following intravenous sodium arsenite injection. d-Penicillamine 500 mg tds was administered and after ten days a 24 hour urine arsenic excretion of 2 mg was reported. There were no symptoms of bone marrow depression, haemolysis or peripheral neuropathy. After a further ten days treatment the urine arsenic concentration was 20 µg/L. Bansal et al (1991) described a 35 year-old man with severe arsenic polyneuropathy involving the phrenic nerves bilaterally, who recovered following d-penicillamine therapy 250 mg tds for two weeks (route of administration was not stated). However, the 24 hour urine arsenic excretion only rose to 82.4 µg/g creatinine in the first 72 hours of chelation compared to a pretreatment value of 73.5 µg/g creatinine. Cullen et al (1995) reported a 22 month-old child who ingested some 0.7 mg sodium arsenate. Following a single dose of dimercaprol 3 mg/kg, oral d-penicillamine therapy was commenced, 250 mg qds for nine doses. By day four the 24 hour urine arsenic concentration had dropped from 4880 to 682 µg/L. The child was discharged on day six on oral d-penicillamine therapy (dose not stated) but readmitted three days later due to a persistently high urine arsenic excretion (650 µg/L on day five). At this stage d-penicillamine was replaced by DMSA since the child had developed an erythematous rash. Oral d-penicillamine 250 mg qds for seven days failed to increase urinary arsenic elimination in a patient with chronic arsenic poisoning whose initial 24 hour urine arsenic excretion was 342 µg (normal <5 µg/24 h) (Heaven et al, 1994). In another report the urine arsenic concentration in a 67 year-old man with arsenic-associated aplastic anaemia had risen to 20,246 µg/L after four days penicillamine therapy 500 mg qds compared to a pretreatment concentration of 7840 µg/L (Kjeldsberg and Ward, 1972). The patient died from acute myeloid leukaemia some six months later. N-acetylcysteine Animal studies The survival time of mice injected subcutaneously with a lethal dose of sodium arsenite (25 mg/kg) was increased significantly (p<0.05) if intraperitoneal N-acetylcysteine (NAC) 100 mg/kg was administered 30 minutes later. There was no significant difference between this dose of NAC, dimercaprol 5 mg/kg and d-penicillamine 50 mg/kg as an antidote under these conditions (Shum et al, 1981). Clinical studies Martin et al (1990) reported "remarkable clinical improvement" in a 32 year-old man with severe arsenic poisoning following ingestion of a soluble salt when he was administered intravenous NAC 70 mg/kg four hourly after dimercaprol had "failed to improve his condition". However urinary arsenic excretion data were poorly documented and dimercaprol was continued during treatment with NAC. Antidotes: Conclusions and recommendations 1. There are no controlled clinical trials of chelation therapy in arsenic poisoning and no conclusive evidence that dithiol antidotes reverse arsenic-induced neurological damage. On the present evidence it is difficult to recommend a single preferred antidote, though in the absence of renal failure DMSA may offer some advantages over other agents; if renal failure supervenes dimercaprol and haemodialysis should be employed. 2. Chelation therapy should be considered in symptomatic patients where there is analytical confirmation of the diagnosis. 3. Although urine arsenic concentrations are useful to confirm the diagnosis of arsenic poisoning chelation therapy should not be instituted on the basis of an increased urine arsenic concentration alone. Haemodialysis Haemodialysis removes arsenic from the blood but achieves less effective arsenic clearance than chelation therapy when normal renal function is present. It is indicated therefore only in the presence of renal failure. Giberson et al (1976) reported an arsenic dialysis clearance of 87 mL/min. During four hours of dialysis 3360 µg arsenic was removed in a patient with acute arsenic poisoning complicated by renal failure who was also receiving 250 mg intramuscular dimercaprol six times daily. The 24 hour urine arsenic excretion on the same day was 2030 µg though this increased to 75,000 µg/24 h on the sixth hospital day when renal function had recovered. A similar haemodialysis arsenic clearance of 76-87 mL/min was demonstrated in another patient with acute sodium arsenite intoxication complicated by acute renal failure (Vaziri et al, 1980). Levin-Scherz et al (1987) instituted haemodialysis promptly in a patient who presented 26 hours after ingesting 2 g arsenic trioxide. The patient also received intramuscular dimercaprol, 300 mg initially then 180 mg every four hours, but died within 72 hours of ingestion. The maximum amount of arsenic removed in the dialysate was 2.9 mg. Mathieu et al (1992) demonstrated a haemodialysis clearance comparable to some 40-77 per cent of the daily arsenic renal elimination on the day following diuresis recovery. In this case the total blood haemodialysis clearance (210 mL/min) exceeded the instantaneous plasma haemodialysis clearance (mean 85 mL/min), suggesting that some arsenic removed by haemodialysis originated in erythrocytes. These authors showed similar haemodialysis arsenic clearance with or without prior administration of intramuscular dimercaprol 250 mg, and advocated dimercaprol as the chelating agent of choice in arsenic poisoning complicated by renal failure, since it does not impair arsenic dialysis clearance. Experimental evidence in dogs (Sheabar et al, 1989) suggests DMSA-arsenic chelates do not pass through the dialyser membrane. Haemoperfusion A 37 year-old man presented within four hours of ingesting 90 mL of a 1.5 per cent arsenic trioxide solution (Smith et al, 1981). Although initially only tachycardic he subsequently became hypotensive and oliguric. For the first 48 hours he received 200 mg intramuscular dimercaprol four hourly then d-penicillamine 500 mg qds. Charcoal haemoperfusion was instituted 11 hours after admission followed by two hours haemodialysis. These therapies were repeated over the next four days but "discontinued because of continued good renal function and lack of clinical response". Serum arsenic concentrations immediately post haemoperfusion were slightly higher than pre-haemoperfusion values, suggesting no benefit. MEDICAL SURVEILLANCE Blood arsenic concentrations correlate poorly with exposure but may be useful in chronic poisoning (Morton and Dunnette, 1994). Arsenic concentrations in hair and nails have been used to indicate chronic systemic absorption, although their use as biological monitors of occupational exposure to airborne arsenic is limited by difficulty in excluding external contamination (Yamamura and Yamauchi, 1980). Urine arsenic concentrations are the most useful biomonitoring tool, ideally as total excretion from a 24 hour collection although spot urine arsenic concentrations have been proposed in screening asymptomatic patients with a history of possible acute arsenic ingestion (Grande et al, 1987). Since certain marine organisms (especially mussels) may contain large amounts of organoarsenicals, it is advisable that workers refrain from eating seafood for at least 48 hours before urine collection (Buchet et al, 1994). Analytical speciation methods capable of separating inorganic arsenic and its methylated derivatives from dietary organoarsenicals partially overcome this problem (Smith et al, 1977; Farmer and Johnson, 1990; Buchet et al, 1994). However, Vahter (1994) has suggested that under certain circumstances these compounds are released from seafood which can invalidate assessment of inorganic arsenic exposure. Smith et al (1977) demonstrated a close correlation between airborne arsenic and urinary excretion of all arsenic species in arsenic- exposed workers and Farmer and Johnson (1990) found that high urine concentrations of inorganic arsenic plus its mono- and dimethyl derivatives corresponded to the possible workplace atmospheric arsenic concentrations for those involved in arsenic production or glass manufacture. Increased urine arsenic concentrations have also been noted in timber treatment workers using an arsenic-based wood preservative (Gollop and Glass, 1979). Telolahy et al (1993) suggested a potential role for increased urine coproporphyrins as an indicator of chronic occupational arsenic exposure since arsenic is known to disrupt haem metabolism. Regular examination of the skin should be included in an occupational health surveillance programme. Workers with evidence of excessive arsenic exposure should be offered long-term monitoring for the development of skin, bladder or lung cancer, though in practice this may be difficult to execute. OCCUPATIONAL DATA Maximum exposure limit Long-term exposure limit (8 hour TWA reference period) 0.1 mg/m3 (Health and Safety Executive, 1995). OTHER TOXICOLOGICAL DATA Carcinogenicity Individuals who chronically ingest arsenic have an increased risk of developing skin cancer, usually squamous cell carcinoma but also basal cell carcinomas (Chen et al, 1988; Shannon and Strayer, 1989; Chiou et al, 1995). Squamous cell carcinomas may arise in areas of arsenic- induced Bowen's disease (Shannon and Strayer, 1989). Hsueh et al (1995) demonstrated a significant dose-response relationship between skin cancer prevalence and arsenic exposure from artesian well water. These authors identified chronic hepatitis B carriage and malnutrition as risk factors for arsenic-induced dermatological malignancy. Skin cancer has also been documented among vineyard workers and farmers exposed to inhaled inorganic arsenic in pesticides (Thiers et al 1967; Chen and Lin, 1994) although skin and gastrointestinal absorption probably contributed to arsenic toxicity in these cases. Renwick et al (1981) investigated the long term effects of acute arsenic trioxide poisoning. Sixty two of over 200 students who had eaten sausages containing 1.36 g/kg arsenic trioxide were contacted 35 years after the incident. Three had developed rodent ulcers but this incidence may have been related solely to tropical sunlight exposure. There is an association between chronic arsenic exposure and cancer of the urinary tract (Chen et al, 1988; Chen and Lin, 1994; Tsuda et al, 1995), lung (Chen and Lin, 1994; Simonato et al, 1994; Tsuda et al, 1995) and liver, both hepatic angiosarcoma (Lander et al, 1975) and hepatocellular carcinoma (Chen and Lin, 1994). Jhaveri (1959) reported a case of cirrhosis and primary liver cancer in a man occupationally exposed to arsenic trioxide and sodium arsenite for over 20 years. Arsenic may be responsible also for lung cancer occurring in workers employed in the lead, tin and copper-smelting industries (Axelson et al, 1978). Smoking exerts a synergistic effect with ingested and inhaled arsenic in the development of pulmonary malignancy (Tsuda et al, 1995). There is limited evidence that other internal cancers, particularly of the gastrointestinal tract and haematological malignancies, are linked aetiologically to arsenic exposure (Chen and Lin, 1994). Reprotoxicity Animal studies suggest arsenic is embryotoxic and teratogenic but reliable human data are scarce (Council on Scientific Affairs, 1985). Bolliger et al (1992) described a 39 year-old woman maliciously poisoned with arsenic trioxide when 28 weeks pregnant. Her initial urine arsenic concentration was 5.8 mg/L. She developed multiple organ failure with adult respiratory distress syndrome and the fetus died in utero. Fetal organs, notably the liver (26 mg/kg), kidneys (12 mg/kg), spleen (8 mg/kg) and stomach (8 mg/kg) contained increased arsenic concentrations. A woman in the third trimester of pregnancy developed acute renal failure after ingesting a large quantity of an arsenical rat poison. Her baby was delivered on the fourth day post ingestion but died within a few hours from hyaline membrane disease. At autopsy the infant showed significant arsenic accumulation in the liver, brain and kidneys (liver arsenic concentration 0.74 mg/100 g tissue) (Lugo et al, 1969). Genotoxicity The frequency of sister chromatid exchanges in human peripheral lymphocytes exposed to 2 µg/mL was above that of controls. Neither chromatid nor chromosome aberrations were observed in spermatogonia or bone marrow cells following intraperitoneal administration of 0-12 mg arsenic per kilogram to mice (DOSE, 1992). Fish toxicity Rainbow trout (8 wk) : 1-137 µg arsenic per gram in diet, no observed effects. : 137-1477 µg arsenic per gram in diet reduced growth. Reduced feed behaviour has also been reported. LC50 (48 hr) Channa punctatus 14.7 mg (DOSE, 1992). EC Directive on Drinking Water Quality 80/778/EEC Maximum admissible concentration 50 µg/L, as arsenic (DOSE, 1992). WHO Guidelines for Drinking Water Quality Guideline value 10 µg/L, as arsenic (WHO, 1993). AUTHORS SM Bradberry BSc MB MRCP WN Harrison PhD CChem MRSC ST Beer BSc JA Vale MD FRCP FRCPE FRCPG FFOM National Poisons Information Service (Birmingham Centre), West Midlands Poisons Unit, City Hospital NHS Trust, Dudley Road, Birmingham B18 7QH UK This monograph was produced by the staff of the Birmingham Centre of the National Poisons Information Service in the United Kingdom. The work was commissioned and funded by the UK Departments of Health, and was designed as a source of detailed information for use by poisons information centres. Date of last revision 17/1/97 REFERENCES Aposhian HV. Biological chelation: 2,3-Dimercapto-propanesulfonic acid and meso-dimercaptosuccinic acid. Adv Enzyme Regul 1982; 20: 301-19. Aposhian HV. DMSA and DMPS - water soluble antidotes for heavy metal poisoning. Ann Rev Pharmacol Toxicol 1983; 23: 193-215. Aposhian HV, Carter DE, Hoover TD, Hsu C-A, Maiorino RM, Stine E. DMSA, DMPS, and DMPA - as arsenic antidotes. Fundam Appl Toxicol 1984; 4: S58-70. Axelson O, Dahlgren E, Jansson C-D, Rehnlund SO. Arsenic exposure and mortality: a case-referent study from a Swedish copper smelter. Br J Ind Med 1978; 35: 8-15. Bansal SK, Haldar N, Dhand UK, Chopra JS. Phrenic neuropathy in arsenic poisoning. Chest 1991; 100: 878-80. Beckett WS, Moore JL, Keogh JP, Bleecker ML. Acute encephalopathy due to occupational exposure to arsenic. Br J Ind Med 1986; 43: 66-7. Beckman KJ, Bauman JL, Pimental PA, Garrard C, Hariman RJ. Arsenic-induced torsade de pointes. Crit Care Med 1991; 19: 290-2. Bolliger CT, van Zijl P, Louw JA. Multiple organ failure with the adult respiratory distress syndrome in homicidal arsenic poisoning. Respiration 1992; 59: 57-61. Bolla-Wilson K, Bleecker ML. Neuropsychological impairment following inorganic arsenic exposure. J Occup Med 1987; 29: 500-3. Bosque MA, Piera V, Domingo JL, Corbella J. Meso-2,3-Dimercaptosuccinic acid (DMSA) alleviation of arsenite-induced embryofetotoxicity in mice: effectiveness with time. Toxicologist 1991; 11: 295. Buchet JP, Pauwels J, Lauwerys R. Assessment of exposure to inorganic arsenic following ingestion of marine organisms by volunteers. Environ Res 1994; 66: 44-51. Chen C-J, Kuo T-L, Wu M-M. Arsenic and cancers. Lancet 1988; 1: 414-5. Chen C-J, Lin L-J. Human carcinogenicity and atherogenicity induced by chronic exposure to inorganic arsenic. In: Nriagu JO, ed. Arsenic in the environment. Part II: Human health and ecosystem effects. Vol 27. New York: John Wiley & Sons, Inc., 1994; 109-31. Chen G-Q, Zhu J, Shi X-G, Ni J-H, Zhong H-J, Si G-Y, Jin X-L, Tang W, Li X-S, Xong S-M, Shen Z-X, Sun G-L, Ma J, Zhang P, Zhang T-D, Gazin C, Naoe T, Chen S-J, Wang Z-Y, Chen Z. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR/PML proteins Blood 1996; 88: 1052-61. Chiou H-Y, Hsueh Y-M, Liaw, K-F, Horng S-F, Chiang M-H, Pu Y-S, Lin J S-N, Huang C-H, Chen C-J. Incidence of internal cancers and ingested inorganic arsenic: a seven- year follow-up study in Taiwan. Cancer Res 1995; 55: 1296-300. CHIP2/Chemicals (Hazard Information and Packaging for Supply) Regulations1994. Health and Safety Commission. Sudbury: Heath and Safety Executive, 1994. CHRIS/Chemical Hazard Response Information System. In: Tomes plus. Environmental Health and Safety Series I. Vol 26. United States Coast Guard, 1995. Council on Scientific Affairs. Effects of toxic chemicals on the reproductive system. JAMA 1985; 253: 3431-7. CSDS/Chemical Safety Data Sheets. Vol 4a. Cambridge: Royal Society of Chemistry, 1991. Cullen NM, Wolf LR, St Clair D. Pediatric arsenic ingestion. Am J Emerg Med 1995; 13: 432-5. Danielli JF, Danielli M, Fraser JB, Mitchell PD, Owen LN, Shaw G. BAL-intrav: a new non-toxic thiol for intravenous injection in arsenical poisoning. Biochem J 1947; 41: 325-33. DiNapoli J, Hall AH, Drake R, Rumack BH. Cyanide and arsenic poisoning by intravenous injection. Ann Emerg Med; 1989: 308-11. Dollery C, ed. Therapeutic drugs. London: Churchill Livingstone, 1991; D148-51. Domingo JL, Bosque MA, Llobet JM, Corbella J. Amelioration by BAL (2,3-dimercapto-1-propanol) and DMPS (sodium 2,3-dimercapto1-propanesulfonic acid) of arsenite developmental toxicity in mice. Ecotoxicol Environ Safety 1992; 23: 274-81. Done AK, Peart AJ. Acute toxicities of arsenical herbicides. Clin Toxicol 1971; 4: 343-55. Dong J-T, Luo X-M. Effects of arsenic on DNA damage and repair in human fetal lung fibroblasts. Mutat Res 1994; 315: 11-5. Donofrio PD, Wilbourn AJ, Albers JW, Rogers L, Salanga V, Greenberg HS. Acute arsenic intoxication presenting as Guillain-Barré-like syndrome. Muscle Nerve 1987; 10: 114-20. DOSE/Dictionary of substances and their effects. Vol 1. Cambridge: Royal Society of Chemistry, 1992. Engel RR, Hopenhayn-Rich C, Receveur O, Smith AH. Vascular effects of chronic arsenic exposure: a review. Epidemiol Rev 1994; 16: 184-209. Farmer JG, Johnson LR. Assessment of occupational exposure to inorganic arsenic based on urinary concentrations and speciation of arsenic. Br J Ind Med 1990; 47: 342-8. Feldman RG, Niles CA, Kelly-Hayes M, Sax DS, Dixon WJ, Thompson DJ, Landau E. Peripheral neuropathy in arsenic smelter workers. Neurology 1979; 29: 939-44. Fernandez-Sola J, Nogue S, Grau JM, Casademont J, Munne P. Acute arsenical myopathy: morphological description. Clin Toxicol 1991; 29: 131-6. Fielder RJ, Dale EA, Williams SD. Toxicity review 16. Inorganic arsenic compounds. London: HMSO, 1986. Fournier L, Thomas G, Garnier R, Buisine A, Houze P, Pradier F, Dally S. 2,3-dimercaptosuccinic acid treatment of heavy metal poisoning in humans. Med Toxicol 1988; 3: 499-504. Gerhardsson L, Dahlgren E, Eriksson A, Lagerkvist BEA, Lundström J, Nordberg GF. Fatal arsenic poisoning - a case report. Scand J Work Environ Health 1988; 14: 130-3. Gerhardt RE, Hudson JB, Rao RN, Sobel RF. Chronic renal insufficiency from cortical necrosis induced by arsenic poisoning. Arch Intern Med 1978; 138: 1267-9. Gerhardt RE, Crecelius EA, Hudson JB. Moonshine-related arsenic poisoning. Arch Intern Med 1980; 140: 211-3. Giberson A, Vaziri ND, Mirahamadi K, Rosen SM. Hemodialysis of acute arsenic intoxication with transient renal failure. Arch Intern Med 1976; 136: 1303-4. Goebel HH, Schmidt PF, Bohl J, Tettenborn B, Krämer G, Gutmann L. Polyneuropathy due to acute arsenic intoxication: biopsy studies. J Neuropathol Exp Neurol 1990; 49: 137-49. Goldsmith S, From AHL. Arsenic-induced atypical ventricular tachycardia. N Engl J Med 1980; 303: 1096-7. Gollop BR, Glass WI. Urinary arsenic levels in timber treatment operators. NZ Med J 1979; 89: 10-1. Grande GA, Rogers AA, Ling LJ, Googins MK. Urine spot test as guide to treatment in acute pentavalent arsenic ingestion. Vet Hum Toxicol 1987; 29: 73-4. Grant WM, Schuman JS. Toxicology of the eye. 4th ed. Illinois: Charles C Thomas, 1993. Graziano JH. Role of 2,3-dimercaptosuccinic acid in the treatment of heavy metal poisoning. Med Toxicol 1986; 1: 155-62. Greenberg C, Davies S, McGowan T, Schorer A, Drage C. Acute respiratory failure following severe arsenic poisoning. Chest 1979; 76: 596-8. Hall JC, Harruff R. Fatal cardiac arrhythmia in a patient with interstitial myocarditis related to chronic arsenic poisoning. South Med J 1989; 82: 1557-60. Hannemann M, Kreppel H, Kraus M, Szinicz L, Kauth I, Reichl FX, Singh PK, Jones MM. BAL, DMPS, DMSA and new DMSA analogues as arsenic antidotes. Przeglad Lekarski 1995; 52: 175. Hantson Ph, Mahieu P, Lauwerys R. Tolerance of intravenous dimercaptosuccinic acid (DMSA) therapy for acute arsenic poisoning. Przeglad Lekarski 1995; 52: 175. Health and Safety Executive. EH40/95. Occupational exposure limits 1995. Sudbury: Heath and Safety Executive, 1995. Heaven R, Duncan M, Vukelja SJ. Arsenic intoxication presenting with macrocytosis and peripheral neuropathy, without anemia. Acta Haematol 1994; 92: 142-3. Heyman A, Pfeiffer JB, Willett RW, Taylor HM. Peripheral neuropathy caused by arsenical intoxication. A study of 41 cases with observations on the effects of BAL (2,3-dimercapto-propanol). N Engl J Med 1956; 254: 401-9. Hine CH, Pinto SS, Nelson KW. Medical problems associated with arsenic exposure. J Occup Med 1977; 19: 391-6. Hruby K, Donner A. 2,3-dimercapto-1-propanesulphonate in heavy metal poisoning. Med Toxicol 1987; 2: 317-23. HSDB/Hazardous Substances Data Bank. In: Tomes plus. Environmental Health and Safety Series I. Vol 26. National Library of Medicine, 1995. Hsueh Y-M, Cheng G-S, Wu M-M, Yu H-S, Kuo T-L, Chen C-J. Multiple risk factors associated with arsenic-induced skin cancer: effects of chronic liver disease and malnutritional status. Br J Cancer 1995; 71: 109-14. Inns RH, Rice P, Bright JE, Marrs TC. Evaluation of the efficacy of dimercaprol chelating agents for the treatment of systemic organic arsenic poisoning in rabbits. Hum Exp Toxicol 1990; 9: 215-20. IPCS. Environmental Health Criteria 18. Arsenic. Geneva: WHO, 1981. IPCS. Guidelines for drinking-water quality. 2nd ed. Vol 2. Health criteria and other supporting information. Geneva: WHO, 1996. Jenkins RB. Inorganic arsenic and the nervous system. Brain 1966; 89: 479-98. Jhaveri SS. A case of cirrhosis and primary carcinoma of the liver in chronic industrial arsenical intoxication. Br J Ind Med 1959; 16: 248-50. Jolliffe DM, Budd AJ, Gwilt DJ. Massive acute arsenic poisoning. Anaesthesia 1991; 46: 288-90. Jones MM. Chemistry of chelation: Chelating agent antagonists for toxic metals. Chapter 13. In: Goyer RA, Cherian MG, eds. Toxicology of metals: biochemical aspects. Handbook of Experimental Pharmacology Vol 115. Heidelberg: Springer Verlag 1995; 279-304. Kerr HD, Saryan LA. Arsenic content of homeopathic medicines. Clin Toxicol 1986; 24: 451-9. Kersjes MP, Maurer JR, Trestrail JH, McCoy DJ. An analysis of arsenic exposures referred to the Blodgett Regional Poison Center. Vet Hum Toxicol 1987; 29: 75-8. Kew J, Morris C, Aihie A, Fysh R, Jones S, Brooks D. Arsenic and mercury intoxication due to Indian ethnic remedies. Br Med J 1993; 306: 506-7. Kingston RL, Hall S, Sioris L. Clinical observations and medical outcome in 149 cases of arsenate ant killer ingestion. Clin Toxicol 1993; 31: 581-91. Kjeldsberg CR, Ward HP. Leukemia in arsenic poisoning. Ann Intern Med 1972; 77: 935-7. Kosnett MJ, Becker CE. Dimercaptosuccinic acid as a treatment for arsenic poisoning. Vet Hum Toxicol 1987; 29: 462. Kreppel H, Reichl FX, Forth W, Fichtl B. Lack of effectiveness of d-penicillamine in experimental arsenic poisoning. Vet Hum Toxicol 1989; 31: 1-5. Kreppel H, Reichl F-X, Szinicz L, Fichtl B, Forth W. Efficacy of various dithiol compounds in acute As2O3 poisoning in mice. Arch Toxicol 1990; 64: 387-92. Kreppel H, Paepcke U, Thiermann H, Szinicz L, Reichl FX, Singh PK, Jones MM. Therapeutic efficacy of new dimercaptosuccinic acid (DMSA) analogues in acute arsenic trioxide poisoning in mice. Arch Toxicol 1993; 67: 580-5. Kuruvilla A, Bergeson PS, Done AK. Arsenic poisoning in childhood an unusual case report with special notes on therapy with penicillamine. Clin Toxicol 1975; 8: 535-40. Kyle RA, Pease GL. Hematologic aspects of arsenic intoxication. N Engl J Med 1965; 273: 18-23. Lagerkvist BEA, Linderholm H, Nordberg GF. Arsenic and Raynaud's phenomenon. Vasospastic tendency and excretion of arsenic in smelter workers before and after the summer vacation. Int Arch Occup Environ Health 1988; 60: 361-4. Lagerkvist BJ, Zetterlund B. Assessment of exposure to arsenic among smelter workers: a five-year follow-up. Am J Ind Med 1994; 25: 477-88. Lander JJ, Stanley RJ, Sumner HW, Boswell DC, Aach RD. Angiosarcoma of the liver associated with Fowler's solution (potassium arsenite). Gastroenterology 1975; 68: 1582-6. Lenz K, Hruby K, Druml W, Eder A, Gaszner A, Kleinberger G, Pichler M, Weiser M. 2,3-dimercaptosuccinic acid in human arsenic poisoning. Arch Toxicol 1981; 47: 241-3. Le Quesne PM, McLeod JG. Peripheral neuropathy following a single exposure to arsenic. J Neurol Sci 1977; 32: 437-51. Levin-Scherz JK, Patrick JD, Weber FH, Garabedian C Jr. Acute arsenic ingestion. Ann Emerg Med 1987; 16: 702-4. Lugo G, Cassady G, Palmisano P. Acute maternal arsenic intoxication with neonatal death. Am J Dis Child 1969; 117: 328-30. Maehashi H, Murata Y. Arsenic excretion after treatment of arsenic poisoning with DMSA or DMPS in mice. Jpn J Pharmacol 1986; 40: 188-190. Mahieu P, Buchet JP, Roels HA, Lauwerys R. The metabolism of arsenic in humans acutely intoxicated by As2O3. Its significance for the duration of BAL therapy. Clin Toxicol 1981; 18: 1067-75. Marcus SM. Survival after massive arsenic trioxide ingestion. Vet Hum Toxicol 1987; 29: 481. Martin DS, Willis SE, Cline DM. N-acetylcysteine in the treatment of human arsenic poisoning. J Am Board Fam Pract 1990; 2: 293-6. Mathieu D, Mathieu-Nolf M, Germain-Alonso M, Neviere R, Furon D, Wattel F. Massive arsenic poisoning - effect of hemodialysis and dimercaprol on arsenic kinetics. Intensive Care Med 1992; 18: 47-50. McCutchen JJ, Utterback RA. Chronic arsenic poisoning resembling muscular dystrophy. South Med J 1966; 59: 1139-45. Mees RA. The nails with arsenical polyneuritis. JAMA 1919; 72: 1337. Mitchell-Heggs CAW, Conway M, Cassar J. Herbal Medicine as a cause of combined lead and arsenic poisoning. Hum Exp Toxicol 1990; 9: 195-6. Moore DF, O'Callaghan CA, Berlyne G, Ogg CS, Alban Davies H, House IM, Henry JA. Acute arsenic poisoning: absence of polyneuropathy after treatment with 2,3-dimercaptopropanesulphonate (DMPS). J Neurol Neurosurg Psychiatry 1994; 57: 1133-5. Morton WE, Dunnette DA. Health effects of environmental arsenic. In: Nriagu JO, ed. Arsenic in the environment. Part II: Human health and ecosystem effects. Vol 27. New York: John Wiley & Sons, Inc., 1994; 17-34. Narang APS. Arsenicosis in India. Clin Toxicol 1987; 25: 287-95. Nicolis GD, Helwig EB. Exfoliative dermatitis. A clinicopathologic study of 135 cases. Arch Dermatol 1973; 108: 788-97. OHM/TADS-Oil and Hazardous Materials/Technical Assistance Data System. In: Tomes plus. Environmental Health and Safety Series 1. Vol 26. United States Environmental Protection Agency, 1995. Park MJ, Currier M. Arsenic exposures in Mississippi: A review of cases. South Med J 1991; 84: 461-4. Peters RA, Stocken LA, Thompson RHS. British anti-lewisite (BAL). Nature 1945; 156: 616-9. Peters RA, Spray GH, Stocken LA, Collie CH, Grace MA, Wheatley GA. The use of British anti-lewisite containing radioactive sulphur for metabolism investigations. Biochem J 1947; 41: 370-3. Peterson RG, Rumack BH. D-penicillamine therapy of acute arsenic poisoning. J Pediatr 1977; 91: 661-6. Pomroy C, Charbonneau SM, McCullough RS, Tam GKH. Human retention studies with 74As. Toxicol Appl Pharmacol 1980; 53: 550-7. Reichl F-X, Kreppel H, Szinicz L, Mückter H, Fichtl B, Forth W. Effect of various antidotes on the biliary and intestinal excretion of arsenic in situ and into the feces in vivo in guinea-pigs after injection of As2O3. Arch Toxicol 1994; 69: 35-8. Reichl F-X, Hunder G, Liebl B, Fichtl B, Forth W. Effect of DMPS and various adsorbents on the arsenic excretion in guinea-pigs after injection with As2O3. Arch Toxicol 1995; 69: 712-7. Renwick JH, Harrington JM, Waldron HA, Dissanaike DS, Lenihan JMA. Long-term effect of acute arsenical poisoning. J Soc Occup Med 1981; 31: 144-7. Reynolds JEF, ed. Martindale: The Extra Pharmacopoeia. London: The Pharmaceutical Press, 1993. Rezuke WN, Anderson C, Pastuszak WT, Conway SR, Firshein SI. Arsenic intoxication presenting as a myelodysplastic syndrome: a case report. Am J Hematol 1991; 36: 291-3. Roses OE, García Fernández JC, Villaamil EC, Camussa N, Minetti SA, Martínez de Marco M, Quiroga PN, Rattay P, Sassone A, Valle Garecca BS, López CM, Olmos V, Pazos P, Piñeiro A, Rodriguez Lenci J. Mass poisoning by sodium arsenite. Clin Toxicol 1991; 29: 209-13. Sanz P, Corbella J, Nogúe S, Munné P, Rodriguez-Pazos M. Rhabdomyolysis in fatal arsenic trioxide poisoning. JAMA 1989; 262: 3271. Sass U, Grosshans E, Simonart JM. Chronic arsenicism: criminal poisoning or drug-intoxication? Report of two cases. Dermatology 1993; 186: 303-5. Schoolmeester WL, White DR. Arsenic poisoning. South Med J 1980; 73: 198-208. Shannon RL, Strayer DS. Arsenic-induced skin toxicity. Hum Toxicol 1989; 8: 99-104. Sheabar FZ, Yannai S, Taitelman V. Efficiency of arsenic clearance from human blood in vitro and from dogs in vivo by extracorporeal complexing hemodialysis. Pharmacol Toxicol 1989; 64: 329-33. Shum S, Skarbovig J, Habersang R. Acute lethal arsenite poisoning in mice: effect of treatment with N-acetylcysteine, d-penicillamine and dimercaprol on survival time. Vet Hum Toxicol 1981; 23: 39-42. Simonato L, Moulin JJ, Javelaud B, Ferro G, Wild P, Winkelmann R, Saracci R. A retrospective mortality study of workers exposed to arsenic in a gold mine and refinery in France. Am J Ind Med 1994; 25: 625-33. Smith TJ, Crecelius EA, Reading JC. Airborne arsenic exposure and excretion of methylated arsenic compounds. Environ Health Perspect 1977; 19: 89-93. Smith SB, Wombolt DG, Venkatesan R. Results of hemodialysis and hemoperfusion in the treatment of acute arsenic ingestion. Clin Exp Dial Apheresis 1981; 5: 399-404. Stocken LA, Thompson RHS. British anti-lewisite. Arsenic and thiol excretion in animals after treatment of lewisite burns. Biochem J 1946; 40: 548-54. St.Petery J, Gross C, Victorica BE. Ventricular fibrillation caused by arsenic poisoning. Am J Dis Child 1970; 120: 367-71. Telolahy P, Javelaud B, Cluet J, de Ceaurriz J, Boudene C. Urinary excretion of porphyrins by smelter workers chronically exposed to arsenic dust. Toxicol Lett 1993; 66: 89-95. Thiers H, Colomb D, Moulin G, Colin L. Le cancer cutané arsenical des viticulteurs du Beaugolais. [Arsenical skin cancer in Beaujolais wine growers]. Ann Dermatol Venereol 1967; 94: 133-158. Tsuda T, Babazono A, Yamamoto E, Kurumatani N, Mino Y, Ogawa T, Kishi Y, Aoyama H. Ingested arsenic and internal cancer: a historical cohort study followed for 33 years. Am J Epidemiol 1995; 141: 198-209. Vahter M. What are the chemical forms of arsenic in urine, and what can they tell us about exposure? Clin Chem 1994; 40: 679-80. Vaziri ND, Upham T, Barton CH. Hemodialysis clearance of arsenic. Clin Toxicol 1980; 17: 451-6. Waldron HA, Scott A. Metals - Arsenic. In: Raffle PAB, Adams PH, Baxter PJ, Lee WR, eds. Hunter's disease of occupations. 8th ed. London: Edward Arnold, 1994; 109-12. Watson WA, Veltri JC, Metcalf TJ. Acute arsenic exposure treated with oral d-penicillamine. Vet Hum Toxicol 1981; 23: 164-6. Wexler J, Eagle H, Tatum HJ, Magnuson HJ, Watson EB. Clinical uses of 2,3-dimercaptopropanol (BAL). II. The effect of BAL on the excretion of arsenic in normal subjects and after minimal exposure to arsenical smoke. J Clin Invest 1946; 25: 467-73. WHO. Guidelines for drinking-water quality. 2nd ed. Vol 1. Recommendations. Geneva: WHO, 1993. Yakata H, Azum T, Kawasaki T, Nakajima T. Extensive osteolysis of the mandible following devitalization of a tooth by arsenic trioxide. J Oral Maxillofac Surg 1985; 43: 462-5. Yamamura Y, Yamauchi H. Arsenic metabolites in hair, blood and urine in workers exposed to arsenic trioxide. Ind Health 1980; 18: 203-10.
See Also: Toxicological Abbreviations Arsenic trioxide (ICSC)